DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF CHITRAL

Assistant Director Academics University of Chitral

Scheme of Studies Bachelor of Science in Computer Science

1ST MEETING OF THE BOARD OF STUDIES 12TH OCTOBER, 2021

ANNEXURE – A

Scheme of Studies Bachelor of Science in Computer Science

Name of Degree: Bachelor of Science in Computer Science

Eligibility Criteria: The minimum requirements for admission is at least 45% marks in FSc/FCS/equivalent Examination.

Duration: The minimum duration for completion of BSCS degree is four and maximum is seven years' subject to approval of extension from the competent authority.

Degree Completion Requirements:

To become eligible for award of BS degree, a student must satisfy the following requirements:

- a Must have studied and passed the prescribed courses, totaling at least 136 credit hours.
- b Must have earned CGPA (Cumulative Grade Point Average) of at least 2.0 on a scale of 4.0.

BSCS Curriculum Design

The structure of BSCS Program is proposed to meet the needs of students through theory and practical computing experience. The students are expected to learn theoretical and practical understanding of the respective field of Computing.

The proposed structure is dynamic and provides basis for various options including Breadth-Based, Depth-Based, and Integrated Breadth & Depth-Based specializations. Student may choose a particular option, which is most appropriate to their planned future career. The following are some relevant details:

The following table gives the distribution of credit hours in different domains of knowledge.

Course Group	Credit hours	
Computing Core	39	
Computer Science Core	24	
Computer Science Supporting	09	
Mathematics & Science Foundation	12	
General Education	19	
University Electives	12	
Computer Science Electives	21	
Total	136	

Table 1 Areas Covered in BSCS Program

Course Code	Course Title	Credit hours
CS 111	Programming Fundamentals	4(3-1)
CS 112	Discrete Structures	3(3-0)
CS 121	Object Oriented Programming	4(3-1)
CS 231	Data Structures & Algorithms	4(3-1)
CS 242	Database Systems	4(3-1)
CS 351	Operating Systems	4(3-1)
CS 354	Computer Networks	4(3-1)
CS 361	Software Engineering	3(3-0)
CS 364	Information Security	3(3-0)
Proj-489	Final Year Project	6(0-6)
Total		39 (27-12)

Table 1.1 Computing Core Courses

 Table 1.2 Computer Science Core Courses

Course Code	Course Title	Credit hours
CS 232	Digital Logic & Design	4(3-1)
CS 241	Computer Organization & Assembly Language	4(3-1)
CS 352	Theory of Automata	3(3-0)
CS 353	Design & Analysis of Algorithms	3(3-0)
CS 362	Compiler Construction	3(3-0)
CS 463	Parallel & Distributed Computing	3(3-0)
CS 472	Artificial Intelligence	4(3-1)
Total		24 (21-3)

 Table 1.3 Computer Science Supporting Courses

Course Code	Course Title	Credit hours
CS 235	Multivariate Calculus	3(3-0)
CS 343	Differential Equations	3(3-0)
CS 481	Theory of Programming Languages	3(3-0)
Total		9-0

Table 1.4 Mathematics and Science Foundation Courses

Course Code	Course Title	Credit hours
CS 114	Calculus & Analytical Geometry	3(3-0)
CS 122	Linear Algebra	3(3-0)
CS 125	Applied Physics	3(3-0)
CS 233	Probability & Statistics	3(3-0)
	Total	12-0

Course Code	Course Title	Credit hours
CS 113	Introduction to Information & Communication Technologies	3(2-1)
CS 115	English Composition & Comprehension	3(3-0)
CS 116	Islamic Studies/ Ethics	2(2-0)
CS 123	Technical & Business Writing	3(3-0)
CS 124	Pakistan Studies	2(2-0)
CS 234	Communication & Presentation Skills	3(3-0)
CS 471	Professional Practices	3(3-0)
Total		18-1

Table 1.5 General Education Courses

Table 1.6 University Elective Courses

Course Code	Course Title	Credit hours
CS 126	Fundamentals to Geography	3(3-0)
CS 127	Entrepreneurship	3 (3+0)
CS 247	Introduction to Economics	3(3+0)
CS 248	Organizational Behavior	3(3+0)
CS 355	Introduction to Philosophy	3(3+0)
CS 356	Introduction to Sociology	3(3+0)
CS 367	Introduction to Management	3(3+0)
CS 368	Principle of Marketing	3(3+0)
Total (At least 12 credit hours from the above)12-0		

Tuble 1.7 Computer belence Litetive Courses	Table 1	1.7	Computer	Science	Elective	Courses
---	---------	-----	----------	---------	----------	---------

Course Code	Course Title	Credit hours
CS 244	Microprocessor and Assembly Language	3(3+0)
CS 245	Data Communication Networks	3(3+0)
CS 246	Web Technologies	3 (2+1)
CS 365	Visual Programing	3(2+1)
CS 366	Mobile Applications Development	3(2+1)
CS 473	Distributed Data Base Systems	3(2+1)
CS 474	Cryptography	3(3+0)
CS 475	Web Development	3(2+1)
CS 476	Advance Programing	3(2+1)
CS 477	Software Project Management	3(3+0)
CS 478	Introduction to Data Mining	3(2+1)
CS 483	Introduction to Data Science	3(2+1)
CS 484	Networks Security	3(3+0)
CS 485	Cyber Security	3(3+0)
CS 486	Digital Marketing	3(3+0)
Total (Any Seve	n of the above)	21

1 st Semester (18 Credit Hours)			
Course Code	Course Name	Credit Hours	
CS 111	Programming Fundamentals	4 (3+1)	
CS 112	Discrete Structures	3(3+0)	
CS 113	Introduction to Information & Communication	3 (2+1)	
	Technologies		
CS 114	4 Calculus & Analytical Geometry		
CS 115	English Composition & Comprehension	3(3+0)	
CS 116	Islamic Studies	2(2+0)	
Total Credit Hou	18(16+2)		

2 nd Semester (18 Credit Hour)			
Course Code	Course Name	Credit Hours	
CS 121	Object Oriented Programming	4 (3+1)	
CS 122	Linear Algebra	3(3+0)	
CS 123	Technical & Business Writing	3(3+0)	
CS 124	Pakistan Studies	2(2+0)	
CS 125	Applied Physics	3 (3+0)	
Any one of the following Courses			
CS 126	Fundamentals of Geography	3 (3+0)	
CS 127	Entrepreneurship	3 (3+0)	
Total Credit Hours18(17-1)			

3 rd Semester (17 Credit Hour)			
Course Code	Course Name	Credit Hours	
CS 231	Data Structures & Algorithms	4 (3+1)	
CS 232	Digital Logic & Design	4 (3+1)	
CS 233	Probability & Statistics	3 (3+0)	
CS 234	Communication & Presentation Skills	3 (3+0)	
CS 235	Multivariate Calculus	3 (3+0)	
Total Credit Hours		17 (15+2)	

4 th Semester (17 Credit Hour)				
Course Code	Course Name	Credit Hours		
CS 241	Computer Organization & Assembly Language	4 (3+1)		
CS 242	Database Systems	4 (3+1)		
CS 243	Differential Equations	3(3+0)		
Any one of the	following Courses			
CS 244	Microprocessor and Assembly Language	3(3+0)		
CS 245	Data Communication Networks	3(3+0)		
CS 246	Web Technologies	3(2+1)		
Any one of the	following Courses			
CS 247	Introduction to Economics	3(3+0)		
CS 248	Organizational Behaviour	3(3+0)		
		17(15+2)		
Total Credit Ho				

5 th Semester (17 Credit Hour)				
Course Code	Course Name	Credit Hours		
CS 351	Operating Systems	4 (3+1)		
CS 352	Theory of Automata	3(3+0)		
CS 353	Design & Analysis of Algorithms	3(3+0)		
CS 354	Computer Networks	4 (3+1)		
Any one of the	Any one of the following Courses			
CS 355	Introduction to Philosophy	3(3+0)		
CS 356	Introduction to Sociology	3(3+0)		
Total Credit Hours17(15+2)				

6 th Semester (18 Credit Hour)			
Course Code	Course Name	Credit Hours	
CS 361	Software Engineering	3(3+0)	
CS 362	Compiler Construction	3 (3+0)	
CS 363	Parallel & Distributed Computing	3(3+0)	
CS 364	Information Security	3(3+0)	
Any one of the following Courses			
CS 365	Visual Programing	3(2+1)	
CS 366	Mobile Applications Development	3(2+1)	
Any one of the following Courses			
CS 367	Introduction to Management	3(3+0)	
CS 368	Principle of Marketing	3(3+0)	
Total Credit Hours 18(18+0)			

7 th Semester (16 Credit Hour)			
Course Code	Course Name	Credit Hours	
CS 471	Professional Practices	3(3+0)	
CS 472	Artificial Intelligence	4 (3+1)	
Any Three cou	urses from the following		
CS 473	Distributed Data Base Systems	3(2+1)	
CS 474	Cryptography	3(3+0)	
CS 475	Web Development	3(2+1)	
CS 476	Advance Programing	3(2+1)	
CS 477	Software Project Management	3(3+0)	
CS 478	Introduction to Data Mining	3(2+1)	
Total Credit Hours16(12+4)			

8 th Semester (15 Credit Hour)			
Course Code	Course Name	Credit Hours	
CS 481	Theory of Programming Languages	3(3+0)	
Any two course	s from the following		
CS 483	Introduction to Data Science	3(2+1)	
CS 484	Networks Security	3(3+0)	
CS 485	Cyber Security	3(3+0)	
CS 486	Digital Marketing	3(3+0)	
Proj-489	Final Year Project	6(0+6)	
Total Credit Hours15(09+6)			

Course Code:	Course Name:	Credit Hours:	Prerequisites:	
CS 111	Programming Fundamentals	4 (3+1)	None	
Course Learning Outcomes:				
At the end of the	course the students will be able to:	Domain	Bloom's Taxonomy Level	
Understand basic	problem solving steps and logic	Cognitive	2	
constructs		_		
Apply basic prog	raming concepts	Cognitive	3	
Design and imp	lement algorithms to solve real	Cognitive	3	
world problems				
Course Content: Wook 1: Introduc	tion to Drogramming Longuages. Hi	story of C Dasis	alamanta of C + + C + +	
charact	er set $C^{\pm\pm}$ words Reserve words	User define wor	ds/identifier Rules for	
identifi	er	, Oser define work	us/Identifier, Rules for	
Week-2: Basic Da	ata Types (Int, Float, Char), Modifie	rs (Long, Signed, U	Insigned, Double, Long	
Double	, Short), Numbers (Integer Number	ers, Real Numbers), Types of identifiers	
(Consta	nt identifier, Variable identifier), St	atements		
Week-3: Genera	al Structure of C++ Program,	Input Statemen	t, Output Statement,	
String/r	nessage, Char/Char identifier, Assi	gnment Statement,	Operators, Arithmetic	
Operato	ors, Relational Operators, Logic	al Operators, Exp	pression, Initialization	
Stateme	ent, Increment Operator (Prefix & F	ostfix forms), getc	he () function, getch ()	
Iunction	n, Escape sequences	Directives Differen	as between Declaration	
& Defu	nits in C++ Program, Pre-processor I	ression Priority of	Operators Conversion	
of Math	nematical formula into C++ express	ion	operators, conversion	
Week-5: Control	structures/Decision Control structur	e. Transfer of cont	ol Statements (TOCS).	
Repetit	ive Control structure/statements	(Loops), Condit	tional TOCS. Single	
alternat	ive if statement and Nested if state	ment, Double alter	mative if statement (if-	
else sta	tement) and Nested if-else statemen	t		
Week-6: Conditie	onal operator/Ternary Operator (?	:), Switch stateme	ent/Multiple Branching	
stateme	nt and Nested Switch statement	, Manipulators (et	ndl manipulator, setw	
manipu	lator), Continue statement, Break st	atement, goto state	ment	
Week-7: Loop, T	ypes of Loop, Fixed loop (count co	ntrol loop), Non-fi	xed loop (event control	
loop), l	Fixed loop/for loop, Variations in	for loop, Defining	g variable in for loop,	
Initializ	e initializations in for loop, Mit	assion inside for lo	on No testing (infinite	
	Jutput statement inside for loop. Ne	sted for loop	op, no testing (minine	
Week-8: Non-fix	red loop (event control loop). Whi	le-loon (Pre-tested	loop). Do-while loop	
(Post-te	ested loop). Nested while & do-whil	e loop	100p), Do white 100p	
Week-9: Arrays,	One-dimensional array, Two-dimen	sional array		
Week-10: Sorting	g and searching, Bubble sort, Linear	search, Strings (ar	ray of characters)	
Week-11: Function	on, Types of Function, Built-in fund	ction, User-defined	function, Parts of user	
defined	defined function			
Week-12: Function	Week-12: Function with values and no return, Function with values and return, passing values			
from a	function, Passing arguments to a fun	nction		

Week-13: Pointers Basic Concepts, Structure, specifying structure, Defining structure variable, Accessing structure members

Week-14:String and string operations, pointers/references, static and dynamic memory allocation

Week-15-16: File I/O operations

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 1. Starting out with Programming Logic & Degins, 4th Edition, Tony Gaddis,
- 2. C How to Program, 7th Edition by Paul Deitel & Harvey Deitel
- 3. The C Programming Language, 2nd Edition by Brian W. Kernighan, Dennis M. Ritchie
- 4. Object Oriented Programming in C++ by Robert Lafore
- 5. Introduction to Computation and Programming Using Python: With Application to Understanding Data, 2nd Edition by Guttag, John
- 6. Practice of Computing Using Python, 3rd Edition by William Punch & Richard Enbody
- 7. Starting out with Python, 4th Edition, Tony Gaddis.
- 8. Problem Solving and Program Design in C++, 7th Edition by Jeri R. Hanly & Elliot B. Koffman

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 112	Discrete Structures	3(3+0)	None
Course Learning Out	comes:		
At the end of the cours	e the students will be able	Domain	Bloom's Taxonomy
to:			Level
Understand the key	concepts of Discrete	Cognitive	2
Structures such as Sets	, Permutations, Relations,		
Graphs, and Trees etc.			
Apply formal logic pr	oofs and/or informal, but	Cognitive	3
rigorous, logical reasor	ning to real problems, such		
as predicting the behav	iour of software or solving		
problems such as puzzl	les.		
Apply discrete structu	res into other computing	Cognitive	3
problems such as	formal specification,		
verification, databases,	artificial intelligence, and		
cryptography.			
Differentiate various di	iscrete structures and their	Cognitive	4
relevance within the co	ntext of computer science,		
in the areas of data str	uctures and algorithms, in		
particular.			

Course Content:
Mathematical reasoning
Week-1: Objectives of the course, Mathematical reasoning
Week-2: Propositional and predicate logic,
Week-3: Rules of inference, proof by induction, proof by contraposition
Week-4: Proof by contradiction, proof by implication
Set theory
Week-5: Relations, equivalence relations and partitions
Week-6: Partial orderings, recurrence relations
Week-7: Functions, mappings, function composition
Week-8: Inverse functions, recursive functions
Number Theory
Week-9: Sequences, series
Week-10: Counting, inclusion and exclusion principle, pigeonhole principle
Week-11: Permutations
Week-12: Combinations
Graph theory
Week-13: Elements of graph theory
Week-14: Planar graphs, graph coloring, euler graph
Week-15: Hamiltonian path, rooted trees
Week-16: Traversals

Teaching Methodology:

Lectures, Written Assignments, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

- 1. Discrete Mathematics and Its Applications, 7th edition by Kenneth H. Rosen
- 2. Discrete Mathematics with Applications, 4th Edition by Susanna S. Epp
- 3. Discrete Mathematics, 7th edition by Richard Johnson Baugh
- 4. Discrete Mathematical Structures, 4th edition by Kolman, Busby & Ross
- 5. Discrete and Combinatorial Mathematics: An Applied Introduction by Ralph P. Grimaldi
- 6. Logic and Discrete Mathematics: A Computer Science Perspective by Winifred Grassman

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 113	Introduction to Information &	3 (2+1)	None
	Communication Technologies		
Course Learning			
At the end of the	course the students will be able to:	Domain	Bloom's
			Taxonomy Level

Course Content:

- Week-1: Computer, Introduction /Block Diagram, Brief History/Generations, Components, Applications
- Week-2: Types of Computer, Classification according to Logic used, Classification according to size (Super Computers, Mainframe Computers, Mini Computer, Micro Computers, Hardware Vs Software
- Week-3: Parts of a Computer, The System Unit, The Processors, Memory, Disk Systems, Display cards, The Monitors, Keyboard, Storage Devices, Printers
- Week-4: Types of software, Systems Software (Operating Systems (Windows, MS-DOS, LINUX), Translators (Compilers, Interpreters), Utility Programs), Applications software (General Purpose, Word Processors, Spreadsheets, Data Bases, (Accounting Packages), Communication software, Graphical designing packages, Special Purpose Application Software
- Week-5: Operating systems, Introduction to Windows, Familiarization with Windows Icons, My Computer, Recycle Bin, Control panel, Start Button, Other Sub Menus, Task Bar, Shut down Processes
- Week-6: MS Windows: Use of start Menu, Customize the desktop, Use of Windows Help, use of Windows accessories, Word pad, Calculator, Paint, managing files and folders using My Computer, managing files and Folders using Windows Explorer, Managing Recycle bin operations, Internet Explorer (Send/receive E-Mail, Browsing Internet)
- Week-7: MS-Word, Open and save files in specified path or new folder, Selection of text by different methods and applying different operations, Copying Moving & Deleting, Formatting text (Bold, Underline, Font, Color (Font, Fill)
- Week-8: MS-Word, Use of Undo and Redo, Use of text alignment, indenting and managing space. Also, use of bullets and Numbering, Use of Page setup including page margin, Size, paper source & Layout and Printing a Page, Insert (Picture, Header & Footer etc)
- Week-9: MS-Excel, Inserting and deleting cells, rows and columns, Managing worksheets, Formatting and Customizing data, Text Alignment, Border, Patterns and Drawing
- Week-10: MS-Excel, Use of formulas and functions (formatting numbers, decimal places, columns and row setup etc), Use of page setup and printing configurations
- Week-11: MS-PowerPoint, create a New Presentation (Blank, Design Template), New Slide, Formatting and Customizing data, Animation Schemes, Action Buttons, Action Settings etc
- Week-12: The need of Programming, Programming Languages, Machine Language, Low-Level Languages, High-Level Languages

Week-13: Binary, Octal, Decimal and Hexadecimal, Conversion from one number system to other, Binary to Decimal, Binary to Octal

Week-14: Malicious Software Types of Malicious Software, Protection from Malicious Software

Week-15: Data Transmission Modes, Transmission Media, Types of Networks, Local Area Network, Wide Area Network

Week-16: Introduction to Software Engineering, Software Process, Elements of Software Design Life Cycle (SDLC)

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

Bruce J. McLaren, Understanding and Using the Internet, West Publishing Company, 610 Opperman Drive, P. 0. Box 64526, St. Paul, MN 55164

Computer Applications for Business, 2nd Edition, DDC Publishing, 275 Madison Avenue, New York

Nita Hewitt Rutkosky, Microsoft Office Professional, Paradigm Publishing Company, 875 Montreal Way, St Paul, MN 55102

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 114	Calculus & Analytical Geometry	3(3+0)	None
Course Learning Out	tcomes:		
At the end of the cours	e the students will be able to:	Domain	Bloom's
			Taxonomy
			Level

Course Content:

Week-1: Limits and Continuity; Introduction to functions,

Week-2 & 3: Introduction to limits, Techniques of finding limits, Indeterminate forms of limits Week-4: Continuous and discontinuous functions and their applications,

Week-5: Differential calculus; Concept and idea of differentiation

Week-6: Geometrical and Physical meaning of derivatives

Week-7: Rules of differentiation

Week-8: Techniques of differentiation

Week-9: Rates of change, Tangents and Normals lines, Chain rule

Week-10: implicit differentiation, linear approximation, Applications of differentiation

Week-11: Extreme value functions, Mean value theorems, Maxima and Minima of a function for single-variable, Concavity

Week-12: Integral calculus; Concept and idea of Integration, Indefinite Integrals

Week-13: Techniques of integration, Riemann sums and Definite Integrals

Week-14: Applications of definite integrals, Improper integral

Week-15: Applications of Integration; Area under the curve

Week-16: Analytical Geometry; Straight lines in R3, Equations for planes.

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

- 1. Calculus and Analytic Geometry by Kenneth W. Thomas.
- 2. Calculus by Stewart, James.
- 3. Calculus by Earl William Swokowski; Michael Olinick; Dennis Pence; Jeffery A. Cole
- 4. Calculus by Thomas/Finney 9th Edition
- 5. Advance Engineering Mathematics by Erwin Kreyszig 8th Edition

Course Code:	Course Name:	Credit Hours:	Prerequisites:	
CS 115	English Composition & Comprehension	3(3+0)	None	
Course Learnin	ng Outcomes:			
At the end of the	e course the students will be able to:	Domain	Bloom's	
			Taxonomy Level	
To introduce an	d enhance the basic grammatical			
concepts of the E	English Language. Students in this			
course will lea	rn to improve their basic and			
fundamental wri	ting, reading and speaking skills.			
To enable then	n to use the English language			
correctly in their	Business Administration field for			
which English	language competency is a			
prerequisite.				
Course Content	Course Content:			
Week-1-2: Intro	duction to Part of Speech			
Week-3-4: Oper	n and Closed Classes of Words			
Week-5: Nouns	and Determiners: Regular and Irregular N	ouns		
Week-6: Classes	s of Irregular Nouns, Foreign Plurals			
Week-7: Count	and Non-Count Nouns, Use of Determiner	s with Noun		
Week-8: Use of	Definite Article			
Week-9: Verbs: Regular and Irregular Verbs				
Week-10: Lexical and Auxiliary verbs				
Week-11: Uses of Model Auxiliary Verbs				
Week-12: Adjectives and Adverbs: Difference; Inflection and Derivation				
Week-13: Types	s of Adjectives and Adverbs;			

Week-14: Order of Adjectives; Degrees of Adjectives Week-15: Prepositions and Conjunctions Week-16: Basic Sentence and Its Composition

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

- 1. College Writing Skills with Readings, by John Langan, McGraw-Hill, 5th Edition.
- 2. A Textbook of English Prose and Structure by Arif Khattak, et al, GIKI Institute, 2000
- 3. English Grammar in Use by Raymond Murphy. Cambridge University Press'
- 4. A University Grammar of English by Randolph Quirck and Sidney Greenbaum. ELBS
- 5. Practical English Usage by Michael Swan. ELBS

Course Code:	Course Name:	Credit Hours:	Prerequis	sites:	
CS 116 Islamic Studies		2(2+0)	None		
Course Learning Out	comes:				
At the end of the cour	se the students will be	Domain	Bloom's	Taxonomy	
able to:			Level		
This course is aimed at	•				
1 To provide Basic in	nformation about				
Islamic Studies					
2 To enhance unders	tanding of the students				
regarding Islamic C	Civilization				
3 To improve Studen	ts skill to perform				
prayers and other v	vorships				
4 To enhance the ski	ll of the students for				
understanding of is	sues related to faith				
and religious life.					
Introduction to Qura	nic Studies				
1) Basic Concepts	of Quran				
2) History of Qura	n				
3) Uloom-ul-Qura	n				
Study of Selected Text of Holly Quran					
1) Verses of Surah Al-Baqara Related to Faith(Verse No-284-286)					
2) Verses of Surah Al-Hujrat Related to Adab Al-Nabi					
(Verse No-1-18)					

- 3) Verses of Surah Al-Mumanoon Related to Characteristics of faithful (Verse No-1-11)
- 4) Verses of Surah al-Furqan Related to Social Ethics (Verse No.63-77)

Secrat of Holy Prophet (S.A.W) I

- 1) Life of Muhammad Bin Abdullah (Before Prophet Hood)
- 2) Life of Holy Prophet (S.A.W) in Makkah
- 3) Important Events of Life of Holy Prophet in Makkah

Seerat of Holy Prophet (S.A.W) II

- 1) Life of Holy Prophet (S.A.W) in Madina
- 2) Important Events of Life of Holy Prophet in Madina

Introduction to Sunnah

- 1) Basic Concepts of Hadith
- 2) History of Hadith
- 3) Kinds of Hadith
- 4) Sunnah & Hadith
- 5) Legal Position of Sunnah

Selected Study from Text of Hadith

Introduction to Islamic Law & Jurisprudence

- 1) Basic Concepts of Islamic Law & Jurisprudence
- 2) History & Importance of Islamic Law & Jurisprudence
- 3) Sources of Islamic Law & Jurisprudence

Islamic Culture & Civilization

- 1) Basic Concepts of Islamic Culture & Civilization
- 2) Characteristics of Islamic Culture & Civilization

Islam & Science

- 1) Basic Concepts of Islam & Science
- 2) Contributions of Muslims in the Development of Science
- 3) Quran & Science

Islamic Economic System

- 1) Basic Concepts of Islamic Economic System
- 2) Islamic Concept of Riba

Political System of Islam

- 1) Basic Concepts of Islamic Political System
- 2) Islamic Concept of Sovereignty
- 3) Basic Institutions of Govt. in Islam

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

Reference Materials:

- 1) Hameed ullah Muhammad, "<u>Emergence of Islam</u>", IRI, Islamabad
- 2) Hameed ullah Muhammad, "<u>Muslim Conduct of State</u>"
- 3) Hameed ullah Muhammad, 'Introduction to Islam
- 1) Mulana Muhammad Yousaf Islahi,"
- 5) Hussain Hamid Hassan, <u>"An Introduction to the Study of Islamic Law"</u> leaf Publication Islamabad, Pakistan.
- 6) Ahmad Hasan, <u>"Principles of Islamic Jurisprudence"</u> Islamic Research Institute, International Islamic University, Islamabad (1993)
- 7) Mir Waliullah, <u>"Muslim Jurisprudence and the Quranic Law of Crimes"</u> Islamic Book Service (1982)
- 8) H. S. Bhatia, <u>"Studies in Islamic Law, Religion and Society</u>" Deep & Deep Publications New Delhi (1989)
- 9) Dr. Muhammad Zia-ul-Haq, <u>"Introduction to Al Sharia Al Islamia"</u> Allama Iqbal Open University, Islamabad (2001)

Course Code:	Course Name:	Credit Hours:	Prerequisites:	
CS 121	Object Oriented Programming	4 (3+1)	Programming	
			Fundamentals	
Course Learning	Outcomes			
At the end of the c	ourse the students will be able to:	Domain	Bloom's	
			Taxonomy	
			Level	
1. Understand p	rinciples of object oriented paradigm	Cognitive	2	
2. Identify the o	objects & their relationships to build	Cognitive	3	
object oriente	d solution			
3. Model a solu	tion for a given problem using object	Cognitive	3	
oriented princ	riples			
4. Examine an o	bject oriented solution	Cognitive	4	
Course Content:				
Week-1: Introduction to object oriented design, history and advantages of object oriented design				
Week-2: Introduc	Week-2: Introduction to object oriented programming concepts			

Week-3: Classes, objects

- Week-4: Data encapsulation, constructors, destructors
- Week-5: Access modifiers
- Week-6: const vs non-const functions, static data members & functions

Week-7: Function overloading, operator overloading

Week-8: Identification of classes and their relationships

Week-9: Composition, aggregation

Week-10: Inheritance, multiple inheritance

Week-11: Polymorphism

Week-12: Abstract classes and interfaces, generic programming concepts

Week-13: Function & class templates

Week-14: Standard template library, object streams

Week-15: Data and object serialization using object streams

Week-16: Exception handling

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

1. Starting Out with C++ from Control Structures to Objects, 9th Edition, Tony Gaddis

- 2. C++ How to Program, 10th Edition, Deitel & Deitel.
- 3. Object Oriented Programming in C++, 3rd Edition by Robert Lafore
- 4. Java: How to Program, 9th Edition by Paul Deitel
- 5. Beginning Java 2, 7th Edition by Ivor Horton
- 6. An Introduction to Object Oriented Programming with Java, 5th Edition by C. Thomas Wu

Course Code:	Course Name:	Credit Hours:	Prerequisites:	
CS 122	Linear Algebra	3(3+0)	None	
Course Learning	Outcomes			
At the end of the	course the students will be able to:	Domain	Bloom's	
			Taxonomy	
			Level	
Course Content:				
Week-1: Algebra	of linear transformations			
Week-2: Matrice	S			
Week-3: Determi	inants and Rank			
Week-5-7: System	ms of equations, Characteristic equation	ons		
Week-8-9: Vecto	or spaces			
Week-10: Orthog	gonal transformations			
Week-11: linear	Week-11: linear dependence			
Week-12: linear Independence and bases				
Week-13: Eigenvalues and eigenvectors				
Week-14-16: Inn	er product space and quadratic forms			

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

- 1. Elementary Linear Algebra by Howard Anton
- 2. Linear Algebra and its Applications by Gibert Strang

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 123	Technical & Business Writing	3(3+0)	
At the end of the c	course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Include inculcation	ng writing especially technical and		
Business skills in	n the students, equipping them with		
competencies of p	reparing precise resume, proposals and		
reports as future	e business executives and acquiring		
policies, plans, pro	ogrammes policy makers and planners		
Course Content:			
Week-1: Definition	on of Technical writing, Purpose and sco	ppe of Technical wr	iting, Features of
Technical Writing			
Week-2: Introduc	tion to Paragraph, Paragraph Writing, P	rinciple and Examp	oles, Practice and
Exercise			
Week-3: Letter W	riting, Types of Letters, Classification of	f Letters, Rules for	Personal Letters
Week-4: Official	Letters, Social Letters or Letter Applicati	on, Business Letters	s, Components of
Business Letters			
Week-5: Compreh	nension, Principle and Examples, Precise	e Writing, Practice a	nd Exercise
Week-6: Expansi	on of Passage, Method of Expansion,	Point and Principl	les, Practice and
exercise			
Week-7: Introduc	tion to Essay, Types of Essays, Method f	for Good Essays	
Week-8: Outline f	for Essay, Collection of Materials for Ess	say, Characteristics	of a Good Essay,
Principle and Exa	mples		
Week-9: Listening	g Skill, Aim of Listening, Active and Pas	sive Listening, Prac	tice and Exercise
Week-10: Reading Skill, Aim of Reading, Principle Reading, Active and Passive Reading			
Week-11: Effective Speaking, Arrangement of Materials, Method and Principles			
Week-12: Successful Writing, Use of Materials for writing, Principles and Method, Practice			
and Exercise		D 11 16 11	
Week-13: Prepar	ing for Test and Exam, Use of Text	Book's Materials,	Use of Lecture
Materials, Use of	Dictionary		

Week-14: Strategies for Preparation, Topics, Sub-topics, Main Ideas in Reading, Practice and Exercise

Week-15: Developing a positive corporate images, understanding of the readers, Proof reading of the written materials, Practice and exercise.

Week-16: Revision and Practice

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

Reference Materials:

- 1. English for Modern Business.Ketteley and Thompson
- 2. Write Better, Speak Better. Readers Digest.
- 3. Effective Business Communication, 7th Edition, by Herta Murphy
- 4. Technical Writing Situations And Strategies, bye Michael H. Markel, 2nd Edition.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 124	Pakistan Studies	2(2+0)	None
Course Learning C	Dutcomes		
At the end of the c	course the students will be	Domain	Bloom's Taxonomy
able to:			Level
To understand the	spirit of freedom struggle		
in the creation of F	Pakistan.		
To study the pro	ocess of governance and		
national developm	nent in the early years of		
creation of Pakista	n		
To examine the	e external and internal		
challenges the country faced after its			
independence.			
0 0 1 1			

Course Content:

Week-1: Introduction, Advent of Islam in South Asia, Muslim Cultural Heritage in Indo-Pakistan

Week-2: Hindu Muslim relations throughout Muslim period, Efforts for the revival of Islam in the Sub-continent

Week-3: Ideology of Pakistan, Aims and objects of Pakistan's formation, Ideology of Pakistan – its importance, Basis of Pakistan's Ideology, Pakistan Ideology in Iqbal and Quaid-e-Azam's writings

Week-4: Evolution of Muslim Society in the Sub-continent, Emergence of Muslim Society in South Asia, Muslim Society – its emergence progress in South Asia, Decline of Muslim society, scholars, and institutions

Week-5: National Reformation movements, Efforts for reformation – role of Shah Ahmad Sirhindi, Shah Waliullah and his followers, Role of Educational Institutions, Darul Uloom Deoband; Aligarh University; Nadwatul-Uloom; Jamia Islamia, Delhi; Anjuman HimayatiIslam and other Institutions such as Sindh Madrassa and Islamia College, Peshawar

Week-6: Political Struggle for Pakistan Movement, Constitutional reforms and Muslims, Separate elections for Muslims, Khilafat movement

Week-7: Pakistan Movement, Evolution of Muslim nationality (1857-1930), Independence of India; its problems and Muslims, Iqbal's address at Allahabad (1930), Ch. Rehmat ali and Pakistan National Movement, Elections (1937) and the attitude of Congress Government towards Muslims

Week-8: Pakistan Resolution, Elections (1945-46); Constitutional problems and transfer of power.

Week-9: Struggle for Pakistan, Role of the Muslims living in minority provinces, Role of the Muslims living in majority provinces (Punjab, Sind, N.W.F.P., Baluchistan)

Week-10: Contribution of different classes in Pakistan Movement

Week-11: Role of religious scholars (Ulema), Role of men of letters and journalists, Role of youth and students, Role of women

Week-12: Emergence of Pakistan, Plan of India's Division and the emergence of Pakistan, Division of Provinces and Referendum, Important events (during the partition)

Week-13: Efforts for the implementation of Islamic System in Pakistan, Importance of Islamization, Objective resolution (1949), Islamic articles in Pakistan's Constitution of 1956, 1962, 1973, Implementation of Shariah; efforts and contributions, Tehreek-e-Nizam-e-Mustafa, 1970, Steps taken towards the goal after 1970, Study of Islamic Institution such as Zakat, Shariah, Courts and the Council for Islamic Ideology, Our goals; formation of Islamic Society

Week-14: Pakistan – Land and Peoples, Geography: Location: Geographical importance; study of Rural and Urban areas, Natural resources and their use, Agriculture and Industry, Population, Manpower and Education, Economic and Social Welfare

Week-15: Pakistan and Islamic World, Unity of the Islamic World (Philosophy and Practice) **Week-16:** Liberation Movements for Islamic States and Pakistan's role, Pakistan's relation with Iran, Saudi Arabia and Afghanistan, Pakistan's efforts for the unity of the Islamic World

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

- 1. I.H. Qureshi The Struggle for Pakistan, Karachi, 1965
- 2. A Short History of Pakistan Book IV, Alien Rule and Rise of Muslim Nationalism, Karachi, 1967
- 3. Rafiq, Muhammad Sh Tehrik wa Tarikh –e- Pakistan, Lahore, 1977
- 4. TehriK Azadi Hindh Awar Muslaman By Abu Alla Maududi vol 1&2

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 125	Applied Physics	3 (3+0)	None
Course Learning	Outcomes		
At the end of the course the students will be able to:		Domain	Bloom's
			Taxonomy
			Level
Course Content:		-	

Week-1: Electric force and its applications and related problem

Week-2: Conservation of charge, charge quantization, Electric fields due to point charge and lines of force. Ring of charge, Disk of charge

Week-3: A point charge in an electric field, Dipole in a n electric field, The flux of vector field, The flux of electric field

Week-4: Gauss' Law, Application of Gauss' Law, Spherically symmetric charge distribution, A charge isolated conductor

Week-5: Electric potential energy, Electric potentials, Calculating the potential from the field and related problem Potential due to point and continuous charge distribution

Week-6: Potential due to dipole, equipotential surfaces, Calculating the field from the potential **Week-7:** Electric current, Current density, Resistance, Resistivity and conductivity, Ohm's law and its applications, The Hall effect

Week-8: The magnetic force on a current, The Biot- Savart law, Line of B, Two parallel conductors, Amperes' s Law, Solenoid, Toroids,

Week-9: Faraday's experiments, Faraday's Law of Induction, Lenz's law

Week-10: Motional emf, Induced electric field, Induced electric fields

Week-11: The basic equation of electromagnetism, Induced Magnetic field, The displacement current, Reflection and Refraction of light waves

Week-12: Total internal reflection, Two source interference

Week-13: Double Slit interference, related problems, Interference from thin films,

Week-14: Diffraction and the wave theory, related problems

Week-15: Single-Slit Diffraction, related problems

Week-16: Polarization of electromagnetic waves, Polarizing sheets, related problems.

Teaching Methodology:

Lectures, Written Assignments, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

- 1. Fundamentals of Physics (Extended), 10th edition, Resnick and Walker
- 2. Narciso Garcia, Arthur Damask, Steven Schwarz., "Physics for Computer Science Students", Springer Verlag, 1998

Course Code:	Course Name:	Credit Hours:	Prerequisites:	
CS 126	Fundamentals of Geography	3 (3+0)		
Course Learning Outcomes				
At the end of the course the students will be able to: Domain Bloom's Taxor Level				
To expose stude	nts with the founding principles of			
Geography and g	eographical knowledge.			
Course Content:				
Week-1: Introduc	ction, Definitions, scope and branches	of Geography		
Week-2: Themes	and tools of Geography			
Week-3: The Uni	iverse, Solar System & associated top	ic		
Week-4: Latitud	es, longitudes, their importance & Ro	otation & Revolut	ion of the earth with	
impact				
Week-5 Celestial	position of the Earth. Time, its kinds	& International Da	ate Line(IDL	
Week-06: Lithosp	phere(Internal structure of the earth)			
Week -07: Rocks	, types and importance. Earthquake &	volcanism		
Week-08: Atmos	phere: structure, composition, heat bu	dget of the earth		
Week -09 Mid Te	erm Examinations			
Week-10: Atmos	pheric Pressure, Humidity & Rainfall			
Week-11: Hydro	sphere(Oceanography): Major Ocean	s, Relief of the Oc	ean lfoor,temperature	
of Ocean				
Week-12: Salinit	ty of Oceans, Ocean deposits, Moven	ment of Ocean Wa	ater(Waves, Tides &	
Currents,				
Week-13: Popula	ation and its Worldwide growth & spe	cial emphasis on P	akistan	
Week-14: Popula	ation Distribution of the World contin	ent wise		
Week-15: Major	Economic activities			
Week-16: Polluti	on, its types & controlling measures			
Week-17: Revisi	on			
Week-18: Final	Term Examinations			
Teaching Metho	dology:			
Lectures, Written	Lectures, Written Assignments, Practical labs, Semester Project, Presentations			
Course Assessme	ent:			
Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam				
Reference Materi	als:			
1. Arbogast,	A. F. (2007) Discovering Physical Ge	eography, John Wi	ley and Sons, London	
2. Christopherson, R. W. (2009) Geo systems: An introduction to Physical				
3. Geograph	y, Pearson Prentice Hall, New Jersey			
4. De Blij, H	I. J and Muller, P. O. (1996) Physical	Geography of the	Global	
5. Environm	ent, USA, John Wiley and sons Inc., 1	New Jersey		

- 6. Guinness, J. P. & Nagle, G. (2011) Geography, Hodder Education, London
- 7. King, C. (1980) Physical Geography, Basil Blackwell, Oxford
- 8. Miller, G. T. (2008) Living in the Environment, Principles, connections and Solutions, Wadsworth, USA

Course Coder	Course Nome	Credit Hourse	Dronoquisitos
Course Coue.	Course Maine.	3(3+0)	r rerequisites.
Course Learning		3 (3+0)	
At the end of the	ourse the students will be able to:	Domain	Ploom's
At the end of the	course the students will be able to.	Domain	Taxonomy
			Level
Dovelop en idea	for a new venture		Level
Develop all luea	noticel and understand the risks associated:		
Undertake me	whating positioning and sustemer		
development	inketing, positioning, and customer		
Dromoro on onoly	reis of the financial requirements and build		
Frepare an analy	sis of the mancial requirements and build		
a financial str	alegy for the new venture, including		
Dian for the ana	ectation of the equity base;		
Fight for the exe	cution and management of all the relevant		
iunctional areas	of new venture including operations, supply		
Chain, information	on systems, and human resources etc.		
identify and pre	pare legal documents, IP poncy, contracts,		
etc			
Develop a comp	renensive business plan for their venture		
Wools 1. Entrop	: 	aunchin A Danan	astiva Emansina
Tranda: The In	ternet and E Commerce. Entrepreneurial	Opportunition T	be Evolution of
Entropropourchi	The Muthe & Approaches to Entrepreneurial	opportunities, 1.	he Evolution of
Wook 2. Under	b, The Myths & Approaches to Entrepreheum	snip walanmant Com	arativa Analysia
Fatropropourshi	and the Countries Strategic Objectives C	Compatitor Analys	
Wook 3. Unde	retanding Stratagia Issues in Business Pl	on Development	STD Stratagios
Marketing Mix	Strategies	all Development,	STI Strategies,
Wook-4. Under	standing The Entrepreneurial Perspective in	n Individuals. The	Entrepreneurial
Perspective The	Dark Side of Entrepreneurship Entrepren	n murviduais, The neurial Motivation	Entrepreneurial
Perspective in ($r_{ganizations} = Corporate Entrepreneurshing$	Social Entrepren	eurship and The
Ethical Challeng	res of Entrepreneurshin	Boelar Entrepren	eursmp and The
Week-5. Innov	ation: The Creative Pursuit of Ideas Opport	unity Identificatio	n. The search for
New Ideas Entr	enceneurial Imagination and Creativity The	role of Creative 7	Thinking Arenas
in Which People	Are Creative Innovation and the Entrepren	eur. The Innovation	on Process
Week-6: Path	ways to Entrepreneurial Ventures The	Pathways to Ne	w Ventures for
Entrepreneurs (Treating New Ventures Acquiring an Est	ablished Entrepre	neurial Venture
Franchising: The	e Hybrid		incurrar v cincare,
Week-7: Leg	al Challenges for Entrepreneurial Ventu	res. Legal Chal	lenges for The
Entrepreneurial	Venture. Intellectual Property Protect	ion: Patents. C	copyrights. And
Trademarks. Ide	ntifying Legal Structures for Entrepreneuri	al Ventures. Sole	Proprietorships
Partnerships. Co	proprations. Specific Forms of Partnerships	and Corporation	s. Understanding
Bankruptcv	-r, -r or interestings	corporation	,
······································			

Week-8: Sources of Capital for Entrepreneurial Ventures, The Entrepreneur "S Search for Capital, Debt Versus Equity, The Venture Capital Market, Informal Risk Capital: "Angel" Financing

Week-9: Assessment of Entrepreneurial Plan, The Challenge of New- Venture Start-Ups, Pitfalls in Selecting New Ventures, Critical Factors for New-Venture Development, Why New Ventures Fail, The Evaluation Process

Week-10: Marketing Challenges for Entrepreneurial Ventures, The Marketing Concept for Entrepreneurs, Marketing Research, Inhibitors to Marketing Research, Internet Marketing, Developing The Marketing Concept, Developing A Marketing Plan, Pricing Strategies

Week-11: Financial Preparation for Entrepreneurial Ventures, The Importance of Financial Information for Entrepreneurs, Understanding The Key Financial Statements, Preparing Financial Budgets, Pro Forma Statements, Capital Budgeting, Break-Even Analysis, Ratio Analysis

Week-12: Developing an Effective Business Plan, What Is A Business Plan?, Pitfalls To Avoid In Planning, Benefits Of A Business Plan, Developing A Well- Conceived Business Plan, Elements Of A Business Plan, Updating The Business Plan, Presentation Of The Business Plan: The "Pitch"

Week-13: Strategic Entrepreneurial Growth, The Nature Of Strategic Planning In Emerging Firms, Strategic Planning, The Lack Of Strategic Planning, The Value Of Strategic Planning, Managing Entrepreneurial Growth, Venture Development Stages, The Entrepreneurial Company In The Twenty-First Century, Building The Adaptive Firm, The Transition From An Entrepreneurial Style To A Managerial Approach, Understanding The Growth Stage, Unique Managerial Concerns of Growing Ventures, The International Environment: Global Opportunities, Achieving Entrepreneurial Leadership In The New Millennium

Week-14: Valuation Of Entrepreneurial Ventures, The Importance Of Business Valuation, Underlying Issues When Acquiring A Venture, Due Diligence, Analyzing The Business, Establishing A Firm"S Value, Term Sheets In Venture Valuation, Additional Factors In The Valuation Process

Week-15: Harvesting The Entrepreneurial Venture, Harvesting The Venture: A Focus on the Future, The Management Succession Strategy, Key Factors In Succession

Week-16: Projects/ Presentations

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

1. Entrepreneurship – Theory Process Practice, Donald F. Koratko 8th Edition (South Western - Cengage Learning)

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 231	Data Structures & Algorithms	4 (3+1)	
Course Learning Outcomes			

At the end of the course the students will be able to:	Domain	Bloom's
		Taxonomy
		Level
Implement various data structures and their algorithms,	Cognitive	2,3
and apply them in implementing simple applications.		
Analyse simple algorithms and determine their	Cognitive	4,5
complexities.		
Apply the knowledge of data structures to other	Cognitive	3
application domains		
Design new data structures and algorithms to solve	Cognitive	6
problems		
Comme Constant		

Course Content:

Week -1: Introduction to Data, Field, Data item, Records, Data Vs Information, Definition of Data Structure, Linear Data Structure, Non Linear Data Structure, Logical & Physical Data Structure

Week-2: Introduction to Algorithms, Algorithmic Notations, Control Structure of Algorithms (Sequential Flow, Conditional Flow, Iterative/Repetitive Flow)

Week-3: Introduction to the Basic Operations of Data Structure (Insertion, Deletion, Traversing, Searching, Sorting, Merging)

Week-4: Introduction to Arrays, Types of Arrays (One Dimensional Array, Two Dimensional Array), Algorithm for traversing one Dimensional Array, Algorithms for insertion & deletion in one Dimensional Array, Accessing One Dimensional array by Dope Vector method, Representation of One Dimensional array in computer memory

Week-5: Introduction to Two Dimensional Array, Accessing two Dimensional array by Dope Vector method, Representation of One Dimensional array in computer memory (Row-by row method, Column-by-column method)

Week-6: Introduction to Recursion, Program for Factorial using recursion function in C++, Program for Fibonacci sequence using recursion function in C++

Week-7: Introduction to Searching, Types of Searching (Linear Search, Binary Search), Algorithm for Linear Search, Algorithm for Binary Search

Week-8: Introduction to Sorting, Bubble Sort, Selection Sort, Insertion Sort, Algorithms for Bubble, Selection & Insertion Sort

Week-9: Introduction to Stack, Operations on Stack (Push Algorithm, Pop Algorithm) Week-10: Introduction to Queue, Operations on Queue (Push Algorithm, Pop Algorithm, Introduction to De-queue

Week-11: Introduction to One Way Linked List, Operations on One Way Linked List (Insertion Algorithm, Deletion Algorithm)

Week-12: Introduction to Two Way Linked List, Operations on Two Way Linked List (Insertion Algorithm, Deletion Algorithm)

Week-13: Introduction to Trees, Terminologies used in tree, Similar and Copies trees, Binary Trees

Week-14: Types of Binary trees (Strictly binary tree, Complete binary tree), Operations on Binary Tree, Insertion in Binary Tree, Deletion from Binary Tree

Week-15: Traversing of General Tree, Level by Level, Pre Order, Post Order, Traversing of Binary Tree, Pre Order, In Order, Post Order, Notations and Expressions and it's inter conversion

Week-16: Introduction to Graphs, Graph Terminologies, Graph Types, Link representation of graph

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 1. Data Structure By Seymour Lipschutz, Schaum's Outline Series
- 2. Data Structure and Algorithms by Alfred V. Aho, John E. Hofcroft, Jeffery D. Ullman

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 232	Digital Logic & Design	4 (3+1)	Applied
			Physics
Course Learning	Outcomes		
At the end of the	course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Acquire knowled	lge related to the concepts, tools and		
techniques for the	e design of digital electronic circuits		
Demonstrate the	skills to design and analyze both		
combinational an	d sequential circuits using a variety of		
techniques			
Apply the acquire	ed knowledge to simulate and implement		
small-scale digita	l circuits		
Understand the	relationship between abstract logic		
characterizations	and practical electrical implementations.		
Week-1: Number	r Systems		
Week-2: Logic C	Bates		
Week-3: Boolean	n Algebra		
Week-4: Combination logic circuits and designs			
Week-5: Simplification Methods (K-Map, Quinn Mc-Cluskey method)			
Week-6: Flip Flops and Latches			
Week-7: Asynchronous and Synchronous circuits			
Week-8: Counter	ŝ		

Week-9: Shift Registers

Week-10: Triggered devices & its types

Week-11: Binary Arithmetic and Arithmetic Circuits

Week-12: Memory Elements

Week-13: State Machines

Week-14: Introduction Programmable Logic Devices (CPLD, FPGA)

Week-16: Lab Assignments using tools such as Verilog HDL/VHDL, MultiSim

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 1. Digital Fundamentals by Floyd, 11/e.
- 2. Fundamental of Digital Logic with Verilog Design, Stephen Brown, 2/e
- 3. Digital Computer Electronics By Malvino
- 4. Computer Logic Design By M. Morris Mano

Course Code:	Course Name:	Credit Hours:	Prerequisites:	
CS 233	Probability & Statistics	3 (3+0)		
Course Learning	Outcomes			
At the end of the	course the students will be able to:	Domain	Bloom's	
			Taxonomy	
			Level	
Course Content:				
Week 1 Introduct	ion to statistics, basic terminologies re	lated to statistics, type	es of	
data/variables.				
Week 2-3 Scale o	f measurements, Diagrammatical and	Graphical representat	ion of data,	
Numerical represe	entation of data (Mean, Variance, Stan	dard deviation)		
Week 4-5 Introdu sample space, cou	Week 4-5 Introduction to probability theory, set theory and operations with application, sample space, counting techniques.			
Week 6-7 Probability of an event, Rule of probability (Additive, complement, multiplicative/product),				
Week 8 Condition	nal probability and its application, Rule	e of independence.		
Week 9 Mid Tern	Week 9 Mid Term Examination			
Week 10-11 Random variables, Mathematical Expectations, Mean and Variance of Random				
Variables				
Week 12-13 Intro	duction to probability distributions, di	screte and continuous	probability	

functions, mean and variance of probability functions.

Week 14-15 Discrete probability distributions (Bernoulli, Binomial, Poisson, and Hypergeometric distribution)

Week 16-17 Continuous probability distribution (Uniform and Normal distribution) Week 18 Final Term Examination

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 1. Introduction to statistical theory, part-1 by Prof. Sher Muhammad Chaudhary. (9th Edition)
- 2. Elementary statistics; 8th Edition by Prof. Allan G. Bluman
- Probability and statistics foe engineers and scientists by Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers and Keying E. Ye, Pearson; 9th Edition (January 6, 2011). ISBN-10:0321629116
- 4. Schaum's Outline of probability and statistics by John Schiller, R. Alu Srinivasan and Murray Spiegel, McGraw-Hill; 3rd Edition (2008). ISBN-10:0071544259

Course Code:	Course Name:	Credit	Prerequisites:
CS 234	Communication & Presentation Skills	Hours:	
		3 (3+0)	
Course Learning	Outcomes		
At the end of the	e course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
This course is co	omprised of two parts: part-1 and part-2.		
Part-1 focuses of	on listening and speaking: the former gives		
students an expo	sure to the accent, and stress and intonation		
patterns of diffe	rent native and non-native speakers, while		
the latter is a pra	ctice of what they listen to. Both are equally		
important in br	inging about an improvement in learners		
'language profic	eiency in an academic or/and non-academic		
settings. Throug	h audio-visual aids, pen and paper exercises,		
and interactive s	sessions in the class, students improve their		
listening and spe	eaking skills and build their vocabulary. By		
the end of the	course, students will be able to listen,		
comprehend, and speak more proficiently. They will also be			
able to commun	nicate effectively and efficiently with their		
peers and teache	ers. Part-2 builds on Part-I and moves from		
Listening and S	peaking to Speaking and Reading. This part		
focuses on speal	king activities and reading exercises.		

It introduces students to various written texts, which they must comprehend, interpret, and discuss with their peers in the classroom. students will be able to listen, speak and read rationally and effectively.			
Course Content: Listening and Speaking Week-1: Listening for Gist, Specific Information, Global Meaning Week-2-3: Asking for Information and Directions Week-4-5: Making Statements Week-6-7: Giving Instructions, Descriptions, Reasons Week-8: Discussion Skills Week-9: Narration			
Speaking and Reading Week-10: Questions and Answers Week-11-12: Understanding Reading, Discussions, and Decisions Week-13-14: Stories and Scenes Week-15-16: Presentations			
Teaching Methodology:			
Lectures, Written Assignments, Practical labs, Semester Project, Presentations			
Course Assessment:			
Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam			
Reference Materials:			
1. Helgesen, Marc & Steven Brown. Active Listening Bu Understanding. Cambridge: Cambridge University Pre	uilding Skills for ess, 1994.	D 1004	

- 2. Klippel, Friederike. Keep Talking. Cambridge: Cambridge University Press, 1984.
- 3. Gough, Chris. English Vocabulary Organizer. Stamford: Thomson Corporation, 2002.
- 4. Wallwork, Adrican. Discussions: A-Z. Cambridge: Cambridge University Press, 1997.
- 5. Ford, Martyn & Dave King. For Real! English in Everyday Situations. London: Mary Glasgow Magazines, 2003.
- 6. Gammidge, Mick. Speaking Extra. Cambridge: Cambridge University Press, 2005.
- 7. Klippel, Friederike. Keep Talking. Cambridge: Cambridge University Press, 2008.
- 8. Dainty, Peter. Newspaper Articles to Get Teenagers Talking. Glasgow: Mary Glasgow Magazines, 2006.
- 9. Greenall, Simon & Michael Swan. Effective Reading. Cambridge: Cambridge University Press, 2002.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 235	Multivariate Calculus	3 (3+0)	
Course Learning	Outcomes		
At the end of the	course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Understand the	basic concepts and know the basic		
techniques of d	lifferential and integral calculus of		
functions of seve	ral variables;		
Apply the theory	to calculate the gradients, directional		
derivatives, arc l	ength of curves, area of surfaces, and		
volume of solids;			
Solve problems	involving maxima and minima, line		
integral and surfa	ce integral, and vector calculus;		
Course Content:			
Week-1: Functio	ns of Several Variables and Partial Diffe	erentiation	
Week-2-3: Multi	ple Integrals		
Week-4: Line and	d Surface Integrals		
Week-5: Green's	and Stoke's Theorem		
Week-6-7: Fouri	er Series: periodic functions		
Week-8: Functio	ns of any period P-2L		
Week-9 : Even &	odd functions		
Week-10: Half R	ange expansions		
Week-11-12: Fou	arier Transform		
Week-13-14: Laplace Transform			
Week-15-16: Z-Transform.			
Teaching Methodology:			
Lectures, Written Assignments, Practical labs, Semester Project, Presentations			

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 1. Multivariable Calculus, 6th edition James, Stewart 2007 Cengage Learning publishers
- 2. Calculus and Analytical Geometry, 6th edition. Swokowski, Olinick and Pence.1994, Thomson Learning EMEA, Ltd
- 3. Multivariable Calculus, 5th edition Howard, A. Albert, H. 1995, John Wiley

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 241	Computer Organization & Assembly	4 (3+1)	Programming
	Language		Fundamentals
Course Learning	Outcomes		
At the end of the	e course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Acquire the bas	sic knowledge of computer organization,		
computer archite	ecture and assembly language		
Understand the	concepts of basic computer organization,		
architecture, and	assembly language techniques		
Solve the proble	ems related to computer organization and		
assembly langua	ge		
Course Content	t:		
Week-1: Introdu	ction to computer systems: Information is b	its + context	
Week-2: program	ms are translated by other programs into diff	ferent forms, it pay	ys to understand
how compilation	n systems work		
Week-3: process	sors read and interpret instructions stored in	memory	
Week-4: caches	matter, storage devices form a hierarchy, the	e operating system	n manages the
hardware	• . •	1	
Week-5: system	s communicate with other systems using net	works	
week-o: Repres	interest and manipulating information: inform	nation storage, int	eger
representations,	integer arithmetic, floating point	:	
week-/: Machin	formate accessing information	ical perspective, p	rogram
Wools 8. orithm	tic and logical operations, control proceeding	200	
Wook 0. arrow	allocation and access betarogeneous data str		
Wook-10. under	standing pointers, life in the real world: using	uctures on the adh debuga	er out of
bounds memory	references and huffer overflow	ig the gub debugg	ci, out-oi-
Week-11. x86-6	4. extending ia32 to 64 bits		
Week-12: mach	nine-level represent Informations of floating	-noint programs	
Week-13: Proce	ssor architecture: the Y86 instruction set arc	hitecture	
Week-14: logic	design and the Hardware Control Language	(HCL)	
Week-15: seque	ntial Y86 implementations	()	
Week-16: gener	al principles of pipelining, pipelined Y86 im	plementations	
e		1	
Teaching Meth	odology:		
Lectures, Writte	n Assignments, Practical labs, Semester Pro	ject, Presentations	
Course Assessm	nent:		
Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam			
Reference Mater	rials:		
1. Computer Systems: A Programmer's Perspective, 3/E (CS:APP3e), Randal E. Bryant			
and Davi	d R.O' Hallaron, Carnegie Mellon Universit	у	
2 Robert B	ritton MIPS Assembly I anguage Programm	ning Latest Editic	n

2. Robert Britton, MIPS Assembly Language Programming, Latest Edition,

- 3. Computer System Architecture, M. Morris Mano, Latest Edition,
- 4. Assembly Language Programming for Intel- Computer, Latest Edition

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 242	Database Systems	4 (3+1)	
Course Learning	Outcomes		
At the end of the	course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Explain fundame	ntal database concepts.	Cognitive	2
Design conceptu	ual, logical and physical database	Cognitive	5
schemas using dif	fferent data models.		
Identify function	al dependencies and resolve database	Cognitive	2
anomalies by nor	malizing database tables.		
Use Structured	Query Language (SQL) for database	Cognitive	4
definition and ma	nipulation in any DBMS		
Course Content:	:		
Week-1: Basic da	atabase concepts, Database approach vs t	file based system	
Week-2: Databas	se architecture		
Week-3: Three le	evel schema architecture		
Week-4: Data inc	dependence, relational data model, attrib	utes, schemas, tuples	6
Week-5: Domain	is, relation instances, keys of relations, ir	ntegrity constraints	
Week-6: Relation	nal algebra, selection, projection, Cartesi	an product, types of	joins
Week-7: Normal	ization, functional dependencies		
Week-8: Normal	forms		
Week-9: Entity re	elationship model, entity sets, attributes		
Week-10: Relation	onship, entity-relationship diagrams		
Week-11: Structu	ared Query Language (SQL)		
Week-12: Joins a	and sub-queries in SQL		
Week-13: Group	ing and aggregation in SQL		
Week-14: Concu	rrency control		
Week-15: databa	se backup and recovery, indexes		
Week-16: NoSQL systems			
Teaching Metho	dology:		
Lectures, Written Assignments, Practical labs, Semester Project, Presentations			
Course Assessment:			
Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam			
Reference Materi	als:		

 Database Systems: A Practical Approach to Design, Implementation, and Management, 6th Edition by Thomas Connolly and Carolyn Begg

- 2. Database Systems: The Complete Book, 2nd Edition by Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom
- 3. Database System Concepts, 6th Edition by Avi Silberschatz, Henry F. Korth and S. Sudarshan.
- 4. Database Management Systems, 3rd Edition by Raghu Ramakrishnan, Johannes Gehrke

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 243	Differential Equations	3(3+0)	•
Course Learning C	Dutcomes		
At the end of the c	ourse the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Identify, analyze	and subsequently solve physical		
situations whose b	ehavior can be described by ordinary		
differential equation	ons.		
Determine solution	ns to first order separable differential		
equations.			
Determine solutio	ons to first order linear differential		
equations.			
Determine solution	ns to first order exact differential		
equations.			
Determine solutions to second order linear			
homogeneous and	non-homogeneous differential		
equations with con	istant coefficients.		
Course Content:			
Week-1: Ordinary	^{<i>y</i>} Differential Equations of the First Or	rder: Geometrical Con	siderations,
Isoclines			
Week-2: Separabl	e Equations		
Week-3: Equation	is Reducible to Separable Form		
Week-4: Exact D1	Interential Equations		·
Week-5: Integratin	ng Factors, Linear First-Order Differe	ential Equations, variat	ion of
Wook 6. Ordinary	Linear Differential Equations		
Week-0: Orumary	Linear Differential Equations	Order	
Week-7: Hollioge	neous Linear Equations of the Second	Constant Coofficients	
Week-8: Homogeneous Second-Order Equations with Constant Coefficients			
Fountion	Solution, Real Roots, Complex Roots,	, Double Root of the C	maracteristic
Wook-10. Differen	ntial Operators, Cauchy Equation		
Wook 11: Homogeneous Linear Equations of Arbitrary Order, Homogeneous Linear			
Fauations of Arbitrary Order with Constant Coefficients			
Week-12: Non- homogeneous Linear Equations Modelling of Electrical Circuits			
Week-13: Systems of Differential Equations. Series Solutions of Differential Equations			

Week-14-16: Partial Differential Equations: Method of Separation of variables, wave, Heat & Laplace equations and their solutions by Fourier series method

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 1. Advanced Engineering Mathematics Michael, G.1996, Prentice Hall Publishers.
- 2. Advanced Engineering Mathematics, 7th edition, Erwin, K. 1993, John Wiley & Sons Inc.
- 3. A First Course in Differential Equation Zill. Prindle. Weber. Schmidt.1996. Brooks/Cole Publishing.
- 4. Differential Equations with Boundary-Value Problems, Dennis. G. Zill, Michael, R. Cullen. 1996, Brooks/Cole Publishing,
- 5. Elementary Differential Equations with Applications C. H. Edwards. David, E. 1993. Penney, Prentice Hall.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 246	Web Technologies	3(2+1)	OOP
Course Learning C	Dutcomes		
At the end of the c	course the students will be able to:	Domain	Bloom's
Know the fund	lamentals of web application		Taxonomy
architecture and w	eb programming.		Level
Apply a structured	l approach to identifying needs,		
interests, and func	tionality of a website.		
Design dynamic w	vebsites that meet specified needs		
and interests.			
Write well-structu	red, easily maintained, standards-		
compliant, accessible HTML code.			
Write well-structu	red, easily maintained, standards-		
compliant CSS co	de to present HTML pages in		
different ways.			
Use JavaScript for client-side scripting and add			
dynamic content to	o pages.		
Use PHP to impler	ment server-side script for		
creating dynamic v	web pages and access databases.		

Design and implement an interactive web site(s)	
with regard to issues of usability, accessibility, and	
internationalization.	
Further study web technologies, both those that	
exist today and those that will be developed in the	
future.	
Work in collaborative environment by working in	
group assignments.	

Course Content:

Introduction to Internet, WWW vs Internet, Web Browser, Web Servers, Search Engine, Introduction to HTML, HTML vs HTML5, Basic structure of HTML document, HTML tags (Headings, Paragraph, Image, List, Hyperlink, Tables, Forms, Audio, Video, Div, Span tags, etc), Introduction to CSS, CSS Box Model, CSS Selectors, Background Properties, Color Properties, Link Properties, Positions, Media Queries in CSS, Basics of JavaScript, Datatypes in JS, Variables, Function, Loops, DOM, alert(), confirm() and prompt() in JS, JavaScripts Events, onload(), onclick(), ondblclick(), onscroll(), onblur(), onfocus(), etc, Server side scripting, Installing and Configuring Apache and PHP, Variables and Constant in PHP, Output statement in PHP, PHP Datatypes, Function, Loops, Arrays in PHP, Superglobals variables in PHP(\$_GET, \$_POST, \$_FILES, \$_COOKIE, \$_SESSION, \$_SERVER), Passing Variables Between Pages (URL, Sessions, Cookies, and Forms), Creating and Using database in PHP, AJAX, JSON.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

1. Duckett, J. (2014). Web Design with HTML, CSS, JavaScript and jQuery Set (Latest ed.). Wiley Publishing.

2. Nixon, R. (2015). PHP: 20 Lessons to Successful Web Development (Latest ed.). McGraw-Hill Education Group.

3. Nixon, R. (2012). Learning PHP, MySQL, JavaScript, and CSS: A step-by-step guide to creating dynamic websites (Latest ed.). O'Reilly Media, Inc.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 247	Introduction to Economics	3(3+0)	
Course Learning Outcomes			

At the end of the course the students will be able to:	Domain	Ploom's
At the end of the course the students will be able to:	Domani	
		Taxonomy
		Level
This aims at providing the students with a solid		
knowledge in Economic Principles		
Familiarizes him/her with the institutions and policies		
that influence economic activity both at the micro and		
Macro levels in the country		
Course Content:	·	
Nature & scope of Economics:		
Week-1: Definition-Smith, Marshall and Robins, Scope	and Importance of Ec	conomics
Theory of Consumer's Behavior	I I I I I I I I I I I I I I I I I I I	
Week-2 Utility analysis I aw of Diminishing Marginal I	Itility Indifference C	'urves Analysis
Definition of ICs. Budget line and consumer's Equilibriu	im	ui ves 7 mai y 515,
Theory of Demond and Supply	4111	
Week 2 Law of demond Electicity of Demond Law of a	manler Electicity of a	·····1··
week-5 Law of demand, Elasticity of Demand, Law of S	suppry, Elasticity of s	иррту
Market and Price Determination	C . . .	C .
Week-4 Market Definition, Types, Market structure, per	fect composition, imp	perfect
competition (Monopoly, monopolistic competition, oligo	ppoly	
Production		
Week-5 Production function definition, Factors of produ	ction, relationship of	MP, AP & TP
with each other		
Week-6 Theory of Firm/Price		
Revenue, Total revenue, average and marginal revenue		
Week-7 Cost of Production- type and curve,		
National Income		
Week-8 Meaning and definition of National Income. GN	IP. NNP. GDP. PL D	PL Circular Flow
& Measurement NI Circular flow of NI in two sectors e	conomy	
Money	conomy	
Wook-9 Barter System Difficulties Money Definition	and Types	
Inflation	and Types	
West 10 Definition and Types Courses and Solution Int	flation in Dalvistan	
week-10 Definition and Types, Causes and Solution, in	nation in Pakistan	
week-II Bank, Definition and Types, Commercial Bank	k, Function, Central E	ank, Definition
and Functions		
International Trade (Brief Treatment)		
Week-12 Merits and Demerits of International Trade, In	portance of IT	
Balance of Payment		
Week-13 Balance of Trade and Balance of Payments (BOF), Disequilibrium in BOP or		
Adverse BOP & its correction		
Public Finance		
Week-14 Public revenue, sources, Public Expenditure, H	Iands, Sources of Rev	venue &
Expenditure of modern govt		
Taxation		
Week-15 Definition of Tax, Types of Taxes, Direct and Indirect Taxes		

Week-16 Presentation & Quizzes

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

Reference Materials:

- 1. Samulson-Economics, 1998 Edition Mac Graw Hill. Newyorll
- 2. Modern Economic Theory'' KK Dewett, Shyarm. 21 Edition. Lal Trust New Delhi.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 248	Organizational Behaviour	3(3+0)	_
Course Learning (Dutcomes		
At the end of the c	course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Understand the co	mponents of individual behaviour and		
group behaviours	in the organizational context		
Understand the	relevance of the OB theories and		
practices, emphasi	zed by Western texts, in local settings		
Understand the Islamic perspective of understanding and			
directing human be	ehaviour towards achievement of goals		
Understand the car	uses of job dissatisfaction and stress as		
well as methods of	improving job satisfaction and dealing		
with stress			
Analyze the impac	et of individuals and team behaviour on		
organizational productivity			
Evaluate the impact of organizational structure, design,			
culture and change			
Synthesize various	s theories of motivation and leadership		
and understand the	eir application to workplace.		
Course Content:			

Week-1: What is Organizational Behaviour Importance of organizational behaviour

Week-2: Foundations of Individual Behaviour: Biographical Characteristics, Ability, Learning **Week-3:** Organizational behaviour from Islamic and indigenous perspective Understanding human psychology through the lenses of Quran and Sunnah

Week-4: Attitudes and Job Satisfaction Types of attitudes Types of behaviours

Week-5: Perception and Individual Decision Making Why perception is important Types of decision making Biases and errors in decision making Week-6: Motivation concept Content theories of Motivational Process theories of motivation Week-7: Motivation: from concept to application Applying motivation concepts for designing reward system 80 1. Emotions and Moods Week-8: Mid-Term Examination Week-9: Foundations of Group Behaviour Groups in organization Week-10: Basic Approaches to Leadership Trait Theories Behavioural theories Week-11: Contemporary Issues in Leadership Week-12: Power and politics Types and sources of power Politics in organizations Week-13: Conflict and negotiation Types of conflicts Week-14: Functions of organization structure Types of organizational structure Organizational structure and its impact on individuals and groups Week-15: Organizational culture Organizational culture and individual behaviour Week-16: Conclusion Session Project/Presentation **Teaching Methodology:** Lectures, Written Assignments, Practical labs, Semester Project, Presentations **Course Assessment:** Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

1. Robbins, P. S., & Judge, T. A. (2009). Organizational Behaviour. 13th ed.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 351	Operating Systems	4 (3+1)	
Course Learning	Outcomes		
At the end of the	e course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Understand the characteristics of different structures of		Cognitive	2
the Operating Systems and identify the core functions of			
the Operating Sy	vstems.		
Analyze and evaluate the algorithms of the core functions		Cognitive	4,5
of the Operation	ng Systems and explain the major	_	
performance issu	ues with regard to the core functions.		
Demonstrate the	knowledge in applying system software	Cognitive	3
and tools availab	ble in modern operating systems.		

Course Content: Week-1: Operating systems basics, system calls Week-2: Process concept and scheduling, inter-process communication Week-3: Multithreaded programming, multithreading models, threading issues Week-4: Process scheduling algorithms, thread scheduling Week-5: Multiple-processor scheduling, synchronization Week-6: Critical section, synchronization hardware, synchronization problems Week-7: Deadlocks, detecting and recovering from deadlocks Week-8: Memory management, swapping, contiguous memory allocation Week-9: Segmentation & paging Week-10: Virtual memory management, demand paging, thrashing Week-12: Memory-mapped files, file systems, file concept Week-12: Directory and disk structure, directory implementation, free space management Week-13: Disk structure and scheduling, swap space management Week-14: System protection Week-15: Virtual machines Week-16: Operating system security **Teaching Methodology:** Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 5. Operating Systems Concepts, 9th edition by Abraham Silberschatz
- 6. Modern Operating Systems, 4th edition by Andrew S. Tanenbaum
- 7. Operating Systems, Internals and Design Principles, 9th edition by William Stallings

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 352	Theory of Automata	3(3+0)	
Course Learning	Outcomes		
At the end of the	course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Explain and mani	pulate the different concepts in automata		
theory and form	al languages such as formal proofs,		
automata, regular expressions, Turing machines etc;			
Prove properties	of languages, grammars and automata		
with rigorously formal mathematical methods			
Design of automata, RE and CFG			
Transform betwee	en equivalent NFAs, DFAs and REs		
Define Turing ma	chines performing simple tasks.		

Differentiate and manipulate formal descriptions of			
languages, automata and grammars with focus on regular			
and context-free languages, finite automata and regular			
expressions.			
Course Content:			
Week-1: Computability, Complexity, Verifiability			
Week-2: Types of Proofs, Languages			
Week-3: Types of Languages, Recursive Definitions			
Week-4: Regular Expressions			
Week-5: Finite Automata			
Week-6: Nondeterministic Finite Automata, Transition Graphs			
Week-7: Kleene's Theorem			
Week-8: Finite Automata with Output, Regular & Non-regular Languages			
Week-9: Decidability			
Week-10: Context-Free Grammars			
Week-11: Context-Free Languages & Non-Context-Free Languages			
Week-12: Chomsky Normal Form			
Week-13: Pushdown Automata			
Week-14: Turing Machines			
Week-15: Post machine, Variations on Turing Machines			
Week-16: Universal Turing Machine.			
Teaching Methodology:			
Lectures, Written Assignments, Practical labs, Semester Project, Presentations			
Course Assessment:			
Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam			
Deference Materiala			
1 Introduction to computer theory Deniel I. A. Cohen and Edition			
1. Introduction to computer theory, Damer I. A. Cohen, 2nd Edition 2. Introduction to the Theory of Computation by Michael Sincer, 2nd Edition			
2. Introduction to the Theory of Computation by Michael Sipser, 3rd Edition			

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 353	Design & Analysis of Algorithms	3(3+0)	
Course Learning	Outcomes		
At the end of the	course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Explain what is	meant by "best", "expected", and "worst"		
case behavior of	an algorithm		
Identify the characteristics of data and/or other conditions			
or assumptions t	hat lead to different behaviors.		

Determine informally the time and space complexity of			
simple algorithms			
List and contrast standard complexity classes			
Use big O, Omega, Theta notation formally to give			
asymptotic upper bounds on time and space complexity of			
algorithms			
Use of the strategies(brute-force, greedy, divide-and-			
conquer, and dynamic programming) to solve an			
appropriate problem			
Solve problems using graph algorithms, including single-			
source and all-pairs shortest paths, and at least one			
minimum spanning tree algorithm			
Course Content:			
Week-1: Set Theory			
Week-2: Mathematical Function, Probability Theory			
Week-3: Introduction to Algorithms			
Week-4-5: Algorithm Analysis Techniques			
Week-6: Algorithm Design Techniques			
Week-7: Divide and Conquer Algorithms			
Week-8-9: Greedy Algorithms			
Week-10: Backtracking Algorithms			
Week-11: Dynamic Programming Algorithms			
Week-12: Brute Force Algorithms			
Week-13: Approximation Algorithms			
Week-14: Randomized Algorithms			
Week-15: Non polynomial Time Complexity Algorithms			
Week-16: Revision			
Teaching Methodology:			
Lectures, Written Assignments, Practical labs, Semester Project, Presentations			
Course Assessment:			
Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam			
Reference Materials:			
1) Introduction to Algorithms, By T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.			
Stein, 3rd edition, MIT Press			
2) Analysis and Design of Algorithms By <u>Amrinder Arora</u> 3 rd edition			

Course Code: CS 354	Course Name: Computer Networks	Credit Hours: 4 (3+1)	Prerequisites:
Course Learning	Outcomes		
At the end of the course the students will be able to:		Domain	Bloom's
			Taxonomy
			Level

twork			
Week-3-4: Physical layer functionality			
Week-5: Data link layer functionality, multiple access techniques			
Week-6: Circuit switching and packet switching, LAN technologies			
Week-7: Wireless networks, MAC addressing, networking devices			
Week-11-13: Transport layer protocols, ports and sockets, connection establishment, flow and			
Week-14-15: Application layer protocols			

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 1. Computer Networking: A Top-Down Approach Featuring the Internet, 6th edition by James F. Kurose and Keith W. Ross
- 2. Computer Networks, 5th Edition by Andrew S. Tanenbaum
- 3. Data and Computer Communications, 10th Edition by William Stallings
- 4. Data Communication and Computer Networks, 5th Edition by Behrouz A. Forouzan

Course Code: CS 355	Course Name: Introduction to Philosophy	Credit Hours: 3(3+0)	Prerequisites:	
Course Learning Outcomes				
At the end of the course the students will be able to:		Domain	Bloom's	
			Taxonomy	

		Level	
Understanding basic concepts of philosophy in the fields of			
metaphysics, axiology, and epistemology.			
Understanding of philosophical terms.			
Course Content:			
Week-1: A review of the history of philosophy			
Week-2: Discussion on the major problems and methods of	philosophy		
Studying the work of at least two philosophers from each	h of the following	groups:	
Week-3: Greco-Roman Philosophers Plato, Aristotle, De	emocritus, Pythage	oras, Heraclitus,	
Protagoras, Epicurus, Seneca, and Epictetus			
Week-4: Medieval Religious Philosophers Avicenna, Avera	roes, St. Thomas A	quinas	
Week-: Renaissance Philosophers Machiavelli, Erasmus, T	homas More		
Week-5: Enlightenment and Sui Generis Philosophers Cope	rnicus, Descartes, I	Hobbes, Spinoza,	
Leibniz, Locke, Berkeley, Hume, Kant			
Week-6: Idealists Fichte, Schelling, Schiller, Hegel			
Week-7: Utilitarian Philosophers Jeremy Bentham, J.S. Mil	11		
Week-8: Romantic Reactionaries Rousseau, Schopenhauer,	, Kierkegaard		
Week-9: Materialist Philosophers Feuerbach, Marx			
Week-10: The Irrational Philosophers Bergson, Freud			
Week-:11-12 Phenomenologists and Existentialists Husserl	, Heidegger, Sartre	, Camus, Fanon	
Week-13: Marxist Philosophers Lukacs, Gramsci, Croce, A	lthusser		
Week-14-16: Linguists, Semiotician, Structuralist, and I	Deconstructionists	Saussure, Levi-	
Strauss, Lacan, Barthe, Foucault, Derrida			
Teaching Methodology:			
Lectures, Written Assignments, Presentations			
Course Assessment:			
Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam			
Reference Materials:			
1. Adorno, T.W., Aesthetic Theory. Tr. By C. Lenhard	t. London: Routled	lge & Kegan	
Paul,1984			
2. Ahmad, Absar, Concept of Self and Self-Identity in	2. Ahmad, Absar, Concept of Self and Self-Identity in Contemporary Philosophy. Lahore:		
Iqbal Academy,1986			
3. Aldrich, Virgil., Philosophy of Art, New Jersey: Pre-	entice Hall,1963		
4. Anne, Bruce, Metaphysics: The Elements, Oxford: Basil Blackwell 1986			

- Aristotle, The Works of Aristotle, edited by W.D. Ross. Vol x. Politica, translated by Benjamin Jowett. Oxford: Clarendon Press 1921
- 6. Ayer, A. J., Central Questions of Philosophy London: Penguin Books, 1973
- 7. Cairns, Huntington, Legal Theory from Plato to Hegel. Baltimore: John Hopkins Press. 1967.
- 8. Copleston, Frederick, A History of Philosophy. 9 vols New York: Image Books 1962
- 9. Frankena, William, K. Ethics Prentice Hall, Inc.
- Hurley, Patrick, J, A Concise Introduction to Logic, Belmont: Wadsworth Publishing Co. 1988

- 11. James Rachels [1995] the Elements of Moral Philosophy, McGraw Hill inc.
- 12. John F. Post [1991] Metaphysics: A Contemporary Introduction. Paragon House NY
- 13. Russell, Bertrand, A History of Western Philosophy. London: George Allen and Unwin, 1961
- 14. Russell, Bertrand, Problems of Philosophy. Oxford University Press, 1959
- 15. Passmore, J., A Hundred Years of Philosophy. Penguin Books, 1966

Course Code:	Course Name:	Credit Hours:	Prerequisites:	
CS 356	Introduction to Sociology	3(3+0)		
Course Learning	Outcomes			
At the end of the	course the students will be able to:	Domain	Bloom's	
			Taxonomy	
			Level	
The course is des	igned to introduce the students with			
sociological conc	epts and the discipline. The focus of the			
course shall be or	n significant concepts like social			
systems and struc	ctures, socio-economic changes and			
social processes.				
Course Content:	:			
Week-1: Introduc	ction, Definition, Scope, and Subject Mat	ter, Sociology as a	Science,	
Historical back g	round of Sociology			
Week-2: Basic C	concepts, Group, Community, Society, As	ssociations, Non-Vo	oluntary,	
Voluntary, Organ	Voluntary, Organization, Informal, Formal			
Week-3: Social	Interaction, Levels of Social Interaction			
Week-4: Process	of Social Interaction, Cooperation, Comp	petition, Conflict, A	Accommodation	
Week-5: Acculturation and diffusion, Assimilation, Amalgamation				
Week-6: Social Groups, Definition & Functions, Types of social groups, In and out groups,			nd out groups,	
Primary and Secondary group				
Week-7: Reference groups, Informal and Formal groups, Pressure groups				
Week-: Culture, Definition, aspects and characteristics of Culture, Material and non-material				
culture, Ideal and	real culture			
Week-8: Elements of culture, Beliefs, Values, Norms and social sanctions				
Week-9: Organizations of culture, Traits, Complexes, Patterns, Ethos, Theme, Other related				
concepts	concepts			
Week-10: Cultural Relativism, Sub Cultures, Ethnocentrism and Xenocentrism				
Week-11: Socialization & Personality, Personality, Factors in Personality Formation,				
Socialization				
Week-12: Agenc	ies of Socialization, Role & Status,			
Week-13: Devia	ince Deviance and its types			
Week-14: Collective Behaviour, its types, Crowd behaviour, Public opinion, Propaganda			Propaganda	
Week-15: Social	movements			

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

- 1. Anderson, Margaret and Howard F. Taylor. 2001. Sociology the Essentials. Australia: Wadsworth.
- 2. Brown, Ken 2004. Sociology. UK: Polity Press
- 3. Gidden, Anthony 2002. Introduction to Sociology. UK: Polity Press.
- 4. Macionis, John J. 2006. 10th Edition Sociology New Jersey: Prentice-Hall
- 5. Tischler, Henry L. 2002. Introduction to Sociology 7th ed. New York: The Harcourt Press.
- 6. Frank N Magill. 2003. International Encyclopedia of Sociology. U.S.A: Fitzroy Dearborn Publishers

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 361	Software Engineering	3(3+0)	
Course Learning	Outcomes		
At the end of the c	ourse the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Describe various software engineering processes and activities		Cognitive	1
Apply the system modeling techniques to model a medium size software system		Cognitive	3
Apply software quality assurance and testing principles to medium size software system.		Cognitive	4
Discuss key princi software project m estimation, cost es	ples and common methods for anagement such as scheduling, size timation and risk analysis	Cognitive	2

Course Content: Week-1: Nature of Software, Overview of Software Engineering, Professional software development Week-2: Software engineering practice, Software process structure Week-3: Software process models Week-4: Agile software Development, Agile process models Week-5: Agile development techniques Week-6: Requirements engineering process Week-7: Functional and non-functional requirements Week-8: Model driven engineering, Context models Week-9: Interaction models, Structural models Week-10: Behavioural models Week-11: Architectural design, Design and implementation, UML diagrams Week-12: Design patterns Week-13: Software testing and quality assurance Week-14: Software evolution Week-15-: Project management and project planning, configuration management Week-16: Software Process improvement. **Teaching Methodology:** Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 8. Software Engineering, Sommerville I., 10th Edition, Pearson Inc., 2014
- 9. Software Engineering, A Practitioner's Approach, Pressman R. S.& Maxim B. R., 8th Edition, McGraw-Hill, 2015.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 362	Compiler Construction	3 (3+0)	
Course Learning	Outcomes		
At the end of the course the students will be able to:		Domain	Bloom's
			Taxonomy
			Level
Understand the b	basic techniques used in compiler		
construction suc	h as lexical analysis, top-down, bottom-		

up parsing, context-sensitive analysis, and intermediate				
code generation				
Understand the basic data structures used in compiler				
construction such as abstract syntax trees, symbol tables,				
three-address code, and stack machines				
Design and implement a compiler using a software				
engineering approach				
Use generators (e.g. Lex and Yacc)				
Course Content:				
Week-1: Introduction to interpreter and compiler				
Week-2-3: Compiler techniques and methodology				
Week-4: Organization of compilers				
Week-5-6: Lexical and syntax analysis	Week-5-6: Lexical and syntax analysis			
Week-7-8: Parsing techniques				
Week-9: Types of parsers, Top-down parsing, bottom-up parsing				
Week-10: Type checking				
Week-11-12: Semantic analyser				
Week-13-14: Object code generation and optimization				
Week-15-16: Detection and recovery from errors				
Teaching Methodology:				
Lectures, Written Assignments, Semester Project, Presenta	tions			
Course Assessment:				
Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam				
Reference Materials:				
1. Compilers: Principles, Techniques, and Tools, A. V	1. Compilers: Principles, Techniques, and Tools, A. V. Aho, R. Sethi and J. D. Ullman,			
Addison-Wesley, 2nd ed., 2006				
2. Modern Compiler Design, D. Grune, H. E. Bal, C. J.	H. Jacobs, K. G. L	angendoen, John		
Wiley, 2003.				

3. Modern Compiler Implementation in C, A. W. Appel, M. Ginsburg, Cambridge University Press, 2004.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 363	Parallel & Distributed Computing	3(3+0)	
Course Learning Outcomes			
At the end of the course the students will be able to:		Domain	Bloom's
			Taxonomy
			Level
Learn about para	allel and distributed computers.		

Write portable programs for parallel or distributed				
architectures using Message-Passing Interface (MPI)				
library				
Analytical modelling and performance of parallel				
programs.				
Analyse complex problems with shared memory				
programming with openMP.				

Course Content:

Week-1: Introduction to Parallel Computing and its Importance

Week-2-4: Basic architecture of uniprocessor, parallelism in uniprocessor

Week-5-6: Architectural Classification Scheme (Flynn's Classification, Feng's Classification, Handler's Classification) Concurrent Processes Basic Concepts of Concurrency, Concurrency in Operating Systems, Parallel memory architecture (Shared memory, distributed memory and hybrid), distributed Shared Memory, Cache Coherent problem

Week-7: Cache Coherent protocols, Snoopy-Bus Protocol, Directory-Based Protocol, Data parallel Model

Week-8-9: Conditions of parallelism, Bernstein's Conditions. Parallel Algorithms, Evaluation of Parallel Algorithms, Amdahl's Law, Gustafson-Barsis's Law, Karp-Flatt Metric, Algorithms for Shared Memory and Network Models, Parallel Algorithms for Shared Memory, Parallel Algorithms, Designing Parallel Algorithms, Steps of Designing parallel Algorithms

Week-10-11: Problem Decomposition, Granularity of Computation, Minimizing Overheads, Task Allocation and Load Balancing

Week-12-13: Parallel Architectures (Multi-cores, Multiprocessors, Heterogeneous Systems with Graphical Processing Units)

Week-14-16: Unconventional Architectures, Message-passing Programming and Examples, Shared Memory Programming and Examples

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

1. Czech, Z. J.(2017). Introduction to Parallel Computing (Latest ed.), Cambridge University Press.

Course Code:	Course Name:	Credit Hours:	Prerequisites:	
CS 364	Information Security	3(3+0)		
Course Learning Outcomes				
At the end of the	course the students will be able to:	Domain	Bloom's	
			Taxonomy	
			Level	

Explain key concepts of information security such as	Cognitive	2		
design principles, cryptography, risk management, and				
ethics				
Discuss legal, ethical, and professional issues in	Affective	2		
information security.	a	-		
Apply various security and risk management tools for	Cognitive	3		
achieving information security and privacy.	a :::	4		
Identify appropriate techniques to tackle and solve	Cognitive	4		
problems in the discipline of information security.				
Week-1 Information Sequeity, Natural's Sequeity and Cyber Se	annite.			
CIA Triangle ite Confidentiality Integrity and Availe	curity,			
Critical Characteristics of Information	lonnty			
Expanded CIA Triangle Availability Accuracy Aut	hantiaity Confident	ality Intogrity		
utility & Dessession Components of Information See	urity (Hardwara Dat	anty, integrity,		
Procedures and Networks)	unty (martware, Dat	a, i copie ,		
Week-2				
Security Mechanisms				
Encipherment, Digital Signature, Access Control, Data In	tegrity and Traffic Pa	adding Routing		
Control Notarization & Authentication Exchange	tegnty and manie it	adding, Routing		
Security Attack				
Passive Attacks (Release of message contents and Traffic	Analysis)			
Active Attack(Masquerade , Modification of messages, re	epudiation. Replay &	DOS)		
Week-3	, , , , , , , , , , , , , , , , , , ,			
Cyber Security threads				
Cryptography				
Classical Encryption Techniques				
Substitution Cipher (Mono alphabetic cipher, Poly Alpha	petic cipher and Play	/ fair cipher)		
Week-4				
Transposition Techniques				
Rail fence techniques, Simple Columnar Transpos	ition and Vernam Ci	pher		
• Feistel Structure, Block and Stream Cipher				
Private Key Cryptography and Public Key Cryptography	graphy			
Week-5-7				
Cryptographic Algorithms				
• Symmetric Algorithms Introduction (DES and 3DES)				
A symmetric Algorithm (Diffie Hallman Ver Evaluated & DSA)				
• Asymmetric Algorium (Diffe- Heliman Key Exchange & KSA)				
Week-8				
Key Management in Cryptography				
• Distribution of public keys				
 Public Announcement 				
 Publically available Directory 				

 Public Key Authority
 Public Certification
Week-9 Access Control • DAC, MAC
Authentication
 Types of Authentication
Single factor and multi factor authentication
Week-10-11 Hash Functions and Digital Signature Security Technology: Firewall • Firewalls
 Firewall Processing Modes
Packet Filtering Firewall, Application Gateways Circuit
Gateways and MAC layers Firewall
 Week-12 Software Security, Vulnerabilities and Protection, Malware Week-13-14 Security Policies, policy formation and enforcement Week-15-16 Pakistan Cyber Law and Ethics in Information Security
Teaching Methodology:
Lectures, Written Assignments, Practical labs, Semester Project, Presentations
Course Assessment: Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam
 Reference Materials: 1. Computer Security: Principles and Practice, 3rd edition by William Stallings 2. Principles of Information Security, 6th edition by M. Whitman and H. Mattord 3. Computer Security, 3rd edition by Dieter Gollmann 4. Computer Security Fundamentals, 3rd edition by William Easttom

5. Official (ISC)2 Guide to the CISSP CBK, 3rd edition

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 365	Visual Programing	3(3+0)	
Course Learning	Outcomes		

• Descr	ibe the event driven concepts and	Domain	Bloom's	
application of these concepts on GUI programs			Taxonomy	
on des	sktop applicationsIn		Level	
Utilize	e rapid prototyping techniques to design			
and de	evelop sophisticated Desktop interfaces			
• Design	n, implement, test, debug and publish			
deskto	p applications			
Course Cont	ents:			
Week: 1 Insta	Illation of Visual Studio.Net, Installation of S	SQL-Server, Introdu	ction to Vb.Net	
IDE (C#)				
Week: 2 Data	Types, Byte, Short, Integer, Long, Double,	Char, Date, Declarin	ng Variables &	
Constants				
Week: 3 Strue	ctures, Functions			
Week: 4	Conditional Statements, Loops			
Week: 5	Procedures (Types, Scope of Procedures P	Public, Private, Frien	d)	
	Exceptions Handling (Try, Catch, Finally)			
Week: 6				
	Introduction to classes and Objects			
Week: 7				
	Introduction to Window Forms			
	Working with different controls in Window	v Forms		
	Common Properties (Textbox Control, But	ton Control, Checkb	ox and Radio	
	Controls, Listbox Control, Combo box Con	ntrol)		
Week: 8				
	Creating Multi Document Interfaces			
	MDI Parents, MDI Childs, Adding Menus	in MDI Forms		
Week: 9 & 1	0			
	Database Creation, Tables Creation			
	Working with DML Statements (Insert, De	elete, Update)		
	SQL Server joins statements(Cross-Join, Ir	nner Join, Full Outer	Join)	
Week: 11	ADO.NET Architecture			
	ADO.Net objects & Classes			
Week: 12				
	Working with Data grid (Bind it with Sql	Server Tables)		
	Bind the following Controls			
	Buttons, Text boxes, Combo boxes			
Week: 13 &	14 Perform Data Manipulation Using Add	o.net Coding Method	S	
	Add New Records			
	Delete Record			
	Update Records			
	Search a Particular Record			
Week: 15				
	Into. to Crystal Reports			
Working with Crystal Reports				
Different Section of Crystal Reports				
	Crystal Report Viewer			

Week: 16

Project

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

Reference Materials:

- 1. Event processing in action by Opher Etzion and Peter Niblett
- 2. Windows presentation foundation unleashed by Adam Nathan

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 366	Mobile Applications Development	3(3+0)	Programming
			Fundamentals,
			java
Course Learning	Outcomes		
At the end of the	course the students will be able to:	Domain	Bloom's
Describe	the characteristic of the android		Taxonomy
operating	system.		Level
Design us	ser interface using different widgets,		
menus			
 Design, ir 	nplement, test, debug and publish		
android a	pplications.		
Deploy an	ndroid applications on the android		
marketpla	nce.		

Introduction to JAVA programming, OOP concept in JAVA, Classes, Objects, Inheritance, Polymorphism, Interfaces, Exception Handling, Introduction to Android operating system, Android activity lifecycle, Fragments, Android components including View and View Group, Widgets, Services, Content provider, Broadcast Receivers, Intents (Explicit and Implicit intent), Shared Preferences, Notification, Sensors, Android layouts including Linear Layout, Relative Layout, Table Layout, Scroll view Layout, Constraint Layout, Frame layout, Creating and using databases, Querying in database, Deploying android application on Android market.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

- 1. Horton, J. (2015). Android Programming for Beginners (Latest ed.). Packt Publishing Ltd.
- 2. Phillips, B., & Hardy, B. (2013). Android programming: the beginners guide (Latest ed.). Pearson Education.
- 3. Lee, W. M. (2012). Beginning android 4 application Development (Latest ed.). John Wiley & Sons

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 367	Introduction to Management	3(3+0)	
Course Learning C	Dutcomes		
At the end of the c	ourse the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Hold informed co	nversations with functional specialists		
and understand ho	w to draw effectively on their expertise		
in managing organ	nizations.		
Understand the re-	elevance of the western management		
principles and the	pries, for local settings.		
Understand the	Islamic perspective of managing		
businesses and org	ganizations.		
Apply course conc	cepts and theory in a practical context.		
Integrate several o	f the disciplines studied		
Demonstrate emp	irical investigative skills by producing		
an in-depth analy	sis of a management situation usually		
presented throu	gh case studies, resulting in		
recommendations	for a programme of action.		
Recognise the ne	eed to take a holistic approach to		
performance imp	provement rather than a narrowly		
functional approac	хh.		
Course Content:			
Week-1: Introduction to Management Organization, The management Process			
Week-2: The History and evaluation of Management Organizational theories and different			

approaches to management

Week-3: The organizational Culture and the Manager The external environment and the Manager The internal environment and the manager

Week-4: Foundations and basic elements of Planning Process of planning and MBO Effective strategic planning

Week-5: Decision Making The manager's role as decision maker Decision making process Week-6: Basics of Strategic Management Case of Strategic Management Strategic management process

Week-7: Organizational Structure Types of organizational structures

Week-8: Case Decision-making

Week-9: Human Resource Management HRM processes

Week-10: Motivation its theories Current issues in Motivation

Week-11: Team work and Group Behaviour Case of team and team work

Week-12: Leadership and its characteristics Leadership styles and behaviours

Week-13: The process of Control the Control Standards

Week-14: Case of Controlling Presentation

Week-15: Staffing Presentation

Week-16: Conclusion Session

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

Reference Materials:

1. Mary Coulter & Robbins, Management, International ed.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 368	Principle of Marketing	3(3+0)	
Course Learning	Outcomes		
At the end of the	course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Understand the m	arketplace and the consumers.		
Understand the	elements in marketing mix and their		
application in ma	rketing decisions.		
Outline the function	ions of marketing communication.		
Discuss social res	sponsibility and ethics in marketing		
Understand the	importance of customer relationship in		
marketing and the	e creation of customer value.		
Course Content			
Week-1: Introdu	ction to Marketing, Marketing and The	Society, Importan	ce and Scope of

Marketing, Nature And Concept Of Marketing

Week-2: Marketing Environments, The Marketing Environment, Macro Environment, Micro Environment, Environmental Scanning and Monitoring

Week-3: Marketing & Strategy, Strategic Planning, Strategic Marketing Planning, Forecasting Marketing Demand

Week-4: Marketing Decisions, Information Required for Marketing Decisions, Reasons for Obtaining Information, Marketing Research

Week-5: Consumer Behaviour, Information for Purchase Decisions, Consumer Decision Process, Influence of Social and Psychological Factors

Week-6: Market Segmentation and Targeting, Factors for Segmentation, Selecting The Target Market, Developing The Positioning and Target Market Strategies

Week-7: Products and Services, Definition of Product and Services, Classification of Consumer Goods, Classification of Business Goods

Week-8: Product Development and Life Cycle, Product Development Process and Commercialization, Product Life Cycle Stages and Its Implications

Week-9: Pricing, Overview of Pricing, Importance of Pricing, Break Even Analysis, Factor Effecting Pricing Decisions

Week-10: Setting The Price and Relating Strategies, Pricing Objectives, Sale Based Objectives, Profit Based Objectives, Status Quo Pricing, Price Strategy

Week-11: Pricing Techniques and Their Applications, Cost Based Pricing, Cost Plus Pricing, Target Pricing, Floor Pricing

Week-12: Distribution, Importance of Distribution Channels, Selecting a Channel of Distribution, Recent Trends in Wholesaling and Retailing

Week-13: Promotion, Importance and Types of Promotion, Channels of Communication, Objectives, Budgeting and Promotional Mix,

Week-14: Advertisement and Publicity, Scope of Advertisement and Publicity, Characteristic of Advertisement and Publicity,

Week-15: Introduction to E-Business, Different Trends, Rules of Doing E-Business, E-Business Application in The Market

Week-16: Conclusion Session/presentations

Teaching Methodology:

Lectures, Written Assignments, Presentations

Course Assessment:

Home Assignments, Quizzes, Presentations, Midterm Exam, Final Exam

- 1. Philip Kotler, Principles of Marketing (Latest Edition)
- 2. David Jobber, Principles of Marketing (Latest Edition)
- 3. Jerome Mccarthy & William, D. Pareanth, Basics Marketing, (Latest Edition)

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 471	Professional Practices	3(3+0)	

Course Learning Outcomes			
At the end of the course the students will be able to:	Domain	Bloom's Taxonomy	
		Level	
Course Content:			
Week-1: Computing Profession			
Week-2: Computing Ethics			
Week-3: Philosophy of Ethics. The Structure of Organizat	ions		
Week-4: Finance and Accounting, Anatomy of a Software	House, Computer	Contracts	
Week-5: Intellectual Property Rights			
Week-6: The Framework of Employee Relations Law and Changing Management Practices			
Week-7: Human Resource Management and IT, Health and Safety at Work			
Week-8: Software Liability, Liability and Practice			
Week-9: Computer Misuse and the Criminal Law			
Week-10: Regulation and Control of Personal Information			
Week-11: Overview of the British Computer Society Code of Conduct			
Week-12: IEEE Code of Ethics and Professional Conduct			
Week-13: ACM Code of Ethics and Professional Conduct			
Week-14: ACM/IEEE Software Engineering Code of Ethics and Professional Practice			
Week-15-16: Accountability and Auditing, Social Application of Ethics			
Teaching Methodology:			
Lectures, Written Assignments, Semester Project, Presenta	tions		

Course Assessment:

Home Assignments, Quizzes, Project, Report Writing, Presentations, Midterm Exam, Final Exam

- 1. Professional Issues in Software Engineering by Frank Bott, Allison Coleman, Jack Eaton and Diane Rowland, CRC Press; 3rd Edition (2000). ISBN-10: 0748409513
- 2. Computer Ethics by Deborah G. Johnson, Pearson; 4th Edition (January 3, 2009). ISBN-10: 0131112414
- 3. A Gift of Fire: Social, Legal, and Ethical Issues for Computing and the Internet (3rd Edition) by Sara Baase, Prentice Hall; 3rd Edition (2008). ISBN-10: 0136008488
- 4. Applied Professional Ethics by Gregory R. Beabout, University Press of America (1993). ISBN-10: 0819193747

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 372	Artificial Intelligence	4 (3+1)	Data Structures
			&Algorithms
Course Learning C	Dutcomes		

At the end of the course the students will be able	Domain	Bloom's		
to:		Taxonomy		
		Level		
Understand key components in the field of	Cognitive	2		
artificial intelligence				
Implement classical artificial intelligence	Cognitive	3		
techniques				
Analyse artificial intelligence techniques for	Cognitive	4		
practical problem solving				
Course Content:				
Week-1: Introduction, basic component of AI				
Week-2: Identifying AI systems, branches of AI, o	etc.			
Week-3-4: Reasoning and Knowledge Repres	sentation (Introduction	to Reasoning and		
Knowledge				
Week-5: Representation, Propositional Logic, First	st order Logic)			
Week-6: Problem Solving by Searching (Informed searching, Uninformed searching, Local searching.)				
Week-7-8: Constraint Satisfaction Problems; Adversarial Search (Min-max algorithm, Alpha				
beta pruning, Game-playing)				
Week-9-11: Learning (Unsupervised learning, Sup	pervised learning, Reinfo	prcement learning)		
Week-12: Uncertainty handling (Uncertainty in A	I, Fuzzy logic)	_		
Week-13-14: Recent trends in AI and application	Week-13-14: Recent trends in AI and applications of AI algorithms (trends, Case study of AI			
systems				
Week-15-16: Analysis of AI systems				
Teaching Methodology:				
Lectures, Written Assignments, Practical labs, Semester Project, Presentations				

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 1. Stuart Russell and Peter Norvig, Artificial Intelligence. A Modern Approach, 3rd edition, Prentice Hall, Inc., 2010
- 2. Hart, P.E., Stork, D.G. and Duda, R.O., 2001. Pattern classification. John Willey & Sons
- 3. Luger, G.F. and Stubblefield, W.A., 2009. AI algorithms, data structures, and idioms in Prolog, Lisp, and Java. Pearson Addison-Wesley

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 473	Distributed Data Base Systems	3(3+0)	_
Course Learning C	Dutcomes		

At the end of the course the students will be able to:	Domain	Bloom's
		Taxonomy
		Level
Course Content:		
Week-1		
- What is Distributed Database System?		
- Distributed Data Processing		
- Advantages of data DDBS		
Week-2		
- Relational Database Concepts		
- Normalization		
- Integrity Rules		
Week-3		
- Data Communication Concepts		
- Types of Networks		
- Protocols Standards		
Week-4		
- Client/Server Systems		
- Peer-to-peer Distributed Systems		
- MDBS Architecture		
Week-5		
-Characterization of Ouery Processors		
Week-6		
- Lavers of Ouery processing		
Week-7.8		
- Fragmentation		
- Reasons for Fragmentation		
- Types of Fragmentation		
Week-9, 10		
- Parallel DBMSs		
- Database Servers		
- Centralized Database Systems		
Week-11. 12		
- Properties of Transactions		
- Concurrency control Techniques		
- Locking Methods		
- Dead Lock		
- Timestamp Method		
Week-13		
- Recovery		
- Causes of Failure		
- Local Recovery Protocols		
- Undo/Redo		
- Undo/No.Redo		
- Distributed Recovery Protocols		
 Week-7, 8 Fragmentation Reasons for Fragmentation Types of Fragmentation Week-9, 10 Parallel DBMSs Database Servers Centralized Database Systems Week-11, 12 Properties of Transactions Concurrency control Techniques Locking Methods Dead Lock Timestamp Method Week-13 Recovery Causes of Failure Local Recovery Protocols Undo/Redo Undo/No-Redo Distributed Recovery Protocols 		

-Distributed Two Phase Commit

Week-14

- Integrity Constraints
- Securities Issues in Distributed Databases
- Identification & Authorization
- Distribution of Authorization
- Encryption
- Global View Mechanism

Week-15

- Data Ware Housing introduction
- World Wide Web introduction

Week-16

- Revision

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

1. Principles of Distributed Systems By M. Tamer Ozsu

Course Code:	Course Name:	Credit Hours:	Prerequisites:		
CS 474	Cryptography	3(3+0)	Discrete		
			Structures		
Course Learning	Course Learning Outcomes				
At the end of the	e course the students will be able to:	Domain	Bloom's		
			Taxonomy		
			Level		
Course Content	Course Content:				
Week-1: Classs	ical Cipher				
Week-2: Prime	numbers, Factoring				
Week-3: Modul	ar arithmetic				
Week-4: Block	cipher principles, Feistel networks, S	boxes and P boxes, Bl	ock cipher modes		
of operation,					
Week-5: DES, 3DES					
Week-6: AES					
Week-7: Properties of cryptographic hash functions, MD family					
Week-8: SHA family					

Week-9: Digital signatures

Week-10: Public key crypto systems, Discrete logarithm problem, DH key Exchange Protocol Week-11: Integer factorization Problem, RSA algorithm

Week-12-13: Elliptic Curve cryptography

Week-14: Interactive Proofs, Zero-Knowledge Proofs

Week-15: Multiparty Secure Computation, Chosen Cipher Text Security

Week-16: Homomorphic Encryption

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

- 1. William Stallings, Cryptography and network security, Pearson Education
- 2. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone , Handbook of Applied Cryptography, CRC Press
- 3. Margaret Cozzens, Steven J Miller, The mathematics of encryption, American Mathematical Society
- 4. Research papers related to each topic

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 477	Advance Programming	3(2+1)	OOP, OS
Course Learning	Outcomes		
 When students able to, Create Ja practices. Create m execute fa architectu Create ev (GUIs). 	s complete this course, they will be va applications using OOP ulti-threaded applications which can aster on current multi-core ares. rent-driven Graphical User Interfaces	Domain	Bloom's Taxonomy Level
Introduction to Ja	va, Java programming environment (JDK	, JRE, JVM), Chara	cteristics of Java,

Introduction to Java, Java programming environment (JDK, JRE, JVM), Characteristics of Java, Compilation and Execution process of Java Program, OOP concepts, Classes, Objects, Encapsulation, Inheritance, Polymorphism, Abstraction, Interfaces in Java, Java keywords(import, this, new, static, final, super), Exception handling, try, catch and finally block, throw and throws, Java Collections and Generics, Inner Classes and usage, Threads, and Importance, Starting Threads, Sleep, Join, Priority, Daemon Threads, Thread Synchronization and Importance, Synchronized Methods and Synchronized Blocks, wait(), notify(), notifyall(), Network Programming, Java Sockets, and the java.net package, (UDP and TCP based Programming), RMI, Graphical User Interfaces (GUIs), Java Database Connectivity (JDBC), Select Statement, Insert Statement, Update Statement, Delete Statement.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 1. Deitel, H., Deitel, P. (2015). Java How to Program (Latest ed.). Prentice Hall.
- 2. Schildt, H. (2017). Java: A Beginners Guide (Latest ed.). McGraw-Hill Education.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 477	Software Project Management	3(2+1)	Software
			Engineering
Course Learning	Outcomes	1	
At the end of the	course the students will be able to:	Domain	Bloom's
			Taxonomy
1. Explain p	rinciples of the project lifecycle and how		Level
to identify	opportunities to work with learners on		
relevant a	nd appropriate project scenarios to share		
this under	standing		
2. Critically	evaluate and discuss the issues around		
project ma	anagement and its application in the real		
world wit	h course participants and learners		
3. Choose p	roject management techniques for IT		
projects to	o initiate, plan, execute and evaluate a		
project an	d work in teams to create a project plan		
for a pro	ject scenario that includes key tasks,		
critical pa	th, dependencies and a realistic timeline.		
4. Present	strategies for gaining confidence in		
managing	projects through simple project		
plaining e	examples		

Course Content:

Week-1: Introduction to Software Project Management, Project Management concepts,

Week-2: Project Management Tools, PMI's Knowledge areas, PMI Framework, PMI Process Groups.

Week-3-4: Understanding Organizations.

Week-5-6: Project Planning, Project Evaluation, Selection of an Appropriate Approach in Project, Software Effort Estimation,

Week-7-8: Activity Planning, Risk Management,

Week-9-10: Evaluating the Risks to the Schedule, Risk Control, Configuration Management and Maintenance, Environment for Configuration Control,

Week-11-13: Resource Allocation, Monitoring & Control, Review and Evaluation,

Week-14-16: Challenges of Outsourcing in Project Management

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 3. Deitel, H., Deitel, P. (2015). Java How to Program (Latest ed.). Prentice Hall.
- 4. Schildt, H. (2017). Java: A Beginners Guide (Latest ed.). McGraw-Hill Education.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 481	Theory of Programming Languages	3(3+0)	_
Course Learning	Outcomes		
At the end of the	course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
The better un	nderstating the underlying theory of	Cognitive	1
programming la	nguages		
Enable a student	to choose the appropriate Language for a	Cognitive	2
Project			
Learning of for	mal semantics design for a programming	Cognitive	2
Languages			
Course Content			
Week-1: Introdu	ction: Models of Computation		
Week-2: Syntax	and Semantics, Pragmatics		
Week-3: Langua	age Design Principles		
Week-4: Syntax and Semantics: Context-Free Grammars, Regular		ar Expressions	
Week-5: Attribu	te Grammars and Static Semantics		

Week-6: Algebraic Semantics

Week-7: Axiomatic Semantics, Denotational Semantics

Week-8: BNF grammars and Syntax, Operational Equivalence

Week-9: Abstraction and Generalization, Expressions

Week-10: Assignment Statement, and Control Structures

Week-11: Functional Programming: The Lambda Calculus

Week-12: Operational Semantics, Reduction Order

Week-13: Recursive Functions

Week-14: Logic Programming

Week-15: Inference Engine

Week-16: Concurrency

Teaching Methodology:

Lectures, Written Assignments, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

- 1. Concepts of Programming Languages, Robert W. Sebesta, 10th edition, 2012
- 2. Scott, Michael L., Programming Language Pragmatics, 2nd edition, 2006
- 3. Theory Introduction to Programming Languages, by Anthony A. Aaby, 2004
- 4. Principles of Programming Languages by Mike Grant Zachary Palmer Scott Smith, John Hopkins University 2016.

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 478	Introduction to Data Mining	3(3+0)	
Course Learning	Outcomes		
At the end of the	e course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Recall important	pattern discovery concepts, methods, and		
applications, in	particular, the basic concepts of pattern		
discovery, such	as frequent pattern, closed pattern, max-		
pattern, and asso	ciation rules		
Learn well-know	wn sequential pattern mining methods,		
including metho	ds for mining sequential patterns, such as		
GSP, SPADE, P	refixSpan, and CloSpan		
Learn graph p	attern mining, including methods for		
subgraph patter	n mining, such as gSpan, CloseGraph,		
graph indexing	methods, mining top-k large structural		
patterns in a si	ngle large network, and graph mining		
applications, suc	h as graph indexing and similarity search		
in graph databas	es		

Learn popular distance-based partitioning algorithms for		
cluster analysis, including K-Means, KMedians, K-		
Medoids, and the Kernel K-Means algorithms		
Learn hierarchical clustering algorithms, including basic		
agglomerative and divisive clustering algorithms, BIRCH,		
a micro-clustering-based approach, CURE, which		
explores well-scattered representative points,		
CHAMELEON, which explores graph partitioning on the		
KNN Graph of the data, and a probabilistic hierarchical		
clustering approach		
Learn the density-based approach to cluster analysis,		
which can group dense regions of arbitrary shape, such as		
DBScan and OPTICS, Learn the grid-based approach,		
which organizes individual regions of the data space into		
a grid-like structure, such as STING and CLIQUE		
Course Content:		
Week-1: Pattern Discovery Overview; Pattern Discovery Basic Concepts		
Week-2: Efficient Pattern Mining Methods; Pattern Discovery Programming Assignment		
Week-3: Pattern Evaluation; Mining Diverse Frequent Patterns		
Week-4: Sequential Pattern Mining; Pattern Mining Applications: Mining Spatiotemporal and		
Trajectory Patterns		
Week-5: Constraint-Based Mining		
Week-6: Graph Pattern Mining		
Week-7: Pattern-Based Classification		
Week-8: Pattern Mining Applications: Mining Quality Phrases from Text Data		
Week-9: Advanced Topics on Pattern Discovery, Pattern Discovery Programming		
Week-10: Cluster Analysis Overview; Cluster Analysis Introduction		
Week-11: Similarity Measures for Cluster Analysis		
Week-12: Partitioning-Based Clustering Methods; Hierarchical Clustering Methods		
Week-13: Hierarchical Clustering Methods		
Week-14: Density Based and Grid-Based Clustering Methods; Cluster Analysis Programming		
Assignment		
Week-15: Methods for Clustering Validation		
Week-16: Cluster Analysis Programming Assignment		
Teaching Methodology:		
Lectures, Written Assignments, Practical labs, Semester Project, Presentations		
Course Assessment:		
Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam		
Reference Materials:		
1. Data Mining: Concepts and Techniques, 3rd Edition by Jiawei Han, Jian Pei, Micheline		
Kamber, June 2011, Publisher(s): Morgan Kaufmann		

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 483	Introduction to Data Science	3(3+0)	_
Course Learning	gOutcomes		
At the end of the	e course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level
Understand basi	c concepts of data science, statistics and		
probability and t	heir application in understanding		
behavior of data			
Apply basic tool	s for performing exploratory data		
analysis and visu	ualization.		
Understand basi	c predictive modeling and data analysis		
methods			
Learn Python for performing different data science steps			
Course Content:			
Week-1: Introduction to Data Science			
Week-2-3: Stati	stical Analysis		
Week-4-5: Visu	alizing Data		
Week-6-7: Algo	orithms and Spam Filters		
Week-8-9: Logi	stic Regression		
Week-10-11: Ti	me Stamp and Financial Modeling		
Week-12-13: R	ecommendation Engines		
Week-14-5: Dat	a Engineering		
Week-16: Revis	Week-16: Revision, project presentation and discussions		
Teaching Meth	Teaching Methodology:		
Lectures, Written Assignments, Practical labs, Semester Project, Presentations			
Course Assessn	nent:		
Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam			
Reference Materials:			
1. Data Science and Big Data Analytics by Wiley			
2. Doing D	ata Science by Oreilly		

Course Code:	Course Name:	Credit Hours:	Prerequisites:
CS 485	Cyber Security	3(3+0)	
Course Learning (Dutcomes		
At the end of the c	course the students will be able to:	Domain	Bloom's
			Taxonomy
			Level

Course Content: Week-1: Basic security concepts Week-2: Information security terminology Week-3: Types of malware Week-4: Malware classifications Week-5: Server side web applications attacks Week-6: Cross-site scripting Week-7: SQL Injection, Cross-site request forgery Week-8-9: Planning and policy Week-10: Network protocols and service models Week-11: Transport layer security Week-12: Network layer security Week-13: Cloud & IoT security Week-14-15: Cyber Crimes Week-16: Cyber Laws **Teaching Methodology:** Lectures, Written Assignments, Semester Project, Presentations **Course Assessment:** Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

- 1. Security+ Guide to Network Security Fundamentals by Mark Ciampa, th Edition
- 2. Corporate Computer Society by Randall J.Boyle, 3rd Edition

Course Code: CS 486	Course Name: Digital Marketing	Credit Hours: 3(3+0)	Prerequisites:
Course Learning	Outcomes		
At the end of the	course the students will be able to:	Domain	Bloom's Taxonomy Level

Course Content:

Week-1: Digital Marketing Foundation, Competitor and Website Analysis, Market Research & Niche Potential

Week-2: Website Design using WordPress CMS, Email Marketing

Week-3: Content Creation and Promotion, Search Engine Optimization

Week-4: Social Media Marketing, Optimization & Advertising

Week-5: PPC Google Ads Campaign Management, Optimization, and Reporting, Bing Advertising, Mobile Marketing (SMS Marketing)

Week-6: GEO Marketing, YouTube Video Marketing & Advertising, Website Data Analytics **Week-7:** Affiliate Marketing, Blogging, Freelancing

Week-8: Google AdSense, Digital Marketing Plan & Budget Forecast

Week-9: Digital Marketing for MULTIPLE Business TYPES, Product Marketing (Google Ads, Instagram, Facebook)

Week-10: Neuro Marketing Fundamentals, Paid Ads Optimization Strategies, Online Reputation Management

Week-11: Digital Marketing Automation, FREEMIUM AND PREMIUM Digital Marketing Tools

Week-12: Case Studies, Internationally Recognized Certification Guidance (Google, Microsoft Bing, and HubSpot)

Week-13: Career Counselling and Interview Preparation Guidance

Week-14: Digital Marketing Project Management, MindSet Program, Digital Marketing Growth Hacks.

Week-15-16: Working on Real-Time Projects (Internship Opportunities for eligible Students)

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Home Assignments, Quizzes, Project, Presentations, Midterm Exam, Final Exam

Reference Materials:

1. Recent Research Resources

Course Code:	Course Name:	Credit Hours:	Prerequisites:
Proj-489	Final Year Project	6(0+6)	
Project Learning Outcomes			